Self Studies

Inverse Trigonometric Functions Test - 22

Result Self Studies

Inverse Trigonometric Functions Test - 22
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$f(x)=sin^{-1}(sinx)+cos^{-1}(sinx)$$ and $$\phi (x)=f(f(f(x))),$$ then $$\phi '(x)=$$ 
    Solution

  • Question 2
    1 / -0
    $$\tan^{-1}\dfrac {1}{5}+\tan^{-1}\dfrac {1}{7}+\tan^{-1}\dfrac {1}{3}+\tan^{-1}\dfrac {1}{8}$$ is equal to
    Solution
    $$\tan^{-1}\dfrac{1}{5}+\tan^{-1}\dfrac{1}{7}+\tan^{-1}\dfrac{1}{3}+\tan^{-1}\left(\dfrac{1}{8}\right)$$
    $$\tan^{-1}\left(\dfrac{1}{5}\right)+\tan^{-1}\left(\dfrac{1}{3}\right)+\tan^{-1}\left(\dfrac{1}{7}\right)+\tan^{-1}\left(\dfrac{1}{8}\right)$$
    $$\Rightarrow \tan^{-1}\left(\dfrac{8}{14}\right)+\tan^{-1}\left(\dfrac{15}{55}\right)$$
    $$\Rightarrow \tan^{-1}\left(\dfrac{4}{7}\right)+\tan^{-1}\left(\dfrac{3}{11}\right)$$
    $$\Rightarrow \tan^{-1}\left(\dfrac{44+21}{77-12}\right)=\tan^{-1}\left(\dfrac{65}{65}\right)$$
    $$\Rightarrow \tan^{-1}(1)=\dfrac{\pi}{4}$$.

  • Question 3
    1 / -0
    If $$n - 1\sum\limits_{}^\infty  {{{\cot }^{ - 1}}\left( {{{{n^2}} \over 8}} \right) = \pi .} $$ where $${a \over b}$$ is rational number in its lowest, then correct option is/are 
  • Question 4
    1 / -0
    If $$\sin (\sin^{-1}\dfrac{1}{5}+\cos ^{-1}x)=1$$, then find the value of x.
    Solution
    $$\sin(\sin^{-1}\dfrac{1}{5}+\cos^{-1}x)=1$$

    $$\sin^{-1}\dfrac{1}{5}+\cos^{-1}x =\sin^{-1} 1$$

    $$\sin^{-1}\dfrac{1}{5}+\cos ^{-1}x =\dfrac{\pi}{2}$$

    $$\cos ^{-1} x =\dfrac{\pi}{2}-\sin^{-1}\dfrac{1}{5}$$

    $$\cos ^{-1} x =\cos ^{-1}\dfrac{1}{5}$$

    $$x=\dfrac{1}{5}$$
  • Question 5
    1 / -0
    Find the value of :
    $$\sec^2 (\tan^{-1} 2) +\csc^2 (\cot^{-1} 3)$$
    Solution
    $$\sec^2 (\tan^{-1} 2) +\csc^2 (\cot^{-1} 3)$$
    $$=1+\tan^2 (\tan^{-1} 2) +1+\cot^2 (\cot^{-1} 3)$$
    $$=1+[\tan (\tan^{-1} 2)]^2 +1+[\cot (\cot^{-1} 3)]^2=1+2^2+1+3^2=15$$
  • Question 6
    1 / -0
    The value of the expression $$2\sec^{-1} 2 +\sin^{-1} \dfrac{1}{2}$$ is 
    Solution
    $$2\sec^{-1} 2 +\sin^{-1} \dfrac{1}{2}=\dfrac{2\pi}{3}+\dfrac{\pi}{6}=\dfrac{5\pi}{6}$$
  • Question 7
    1 / -0
    Number of solutions of the equation $$3{\tan ^{ - 1}}x + {\cot ^{ - 1}}x = \pi $$ is
    Solution

  • Question 8
    1 / -0
    If $$x,y,z \in [-1,1]$$ such that $$\cos^{-1}x +\cos^{-1}y +\cos^{-1}z=0$$, find $$x+y+z$$.
    Solution
    We have,
    $$x,y,z \in [-1,1]$$
    $$-1 \leq x \leq 1, -1\leq y \leq 1, -1\leq z \leq 1$$
    $$0 \leq \cos ^{-1}x \leq \pi, 0 \leq \cos^{-1} y \leq \pi, 0 \leq \cos^{-1} z \leq \pi$$
    Therefore,
    $$\cos^{-1}x +\cos^{-1} y +\cos^{-1} z =0$$
    $$\implies \cos^{-1} x=0, \cos^{-1} y=0, \cos^{-1} z=0$$
    $$x=y=z=1$$
    Hence, $$x+y+z=3$$
  • Question 9
    1 / -0
    Find the value of $$\sin^{-1}(2\cos^{2}x-1)+\cos^{-1}(1-2\sin^{2}x)$$.
    Solution
    As we know that
    $$\cos 2 A=2\cos^2 A-1=1-2\sin^2 A$$
    And also $$\text{sin}^{-1} y+\text{cos}^{-1} y=\dfrac{\pi}{2}$$
    So $$\text{sin}^{-1}(2\cos^2 x-1)+\text{cos}^{-1}(1-2\sin^2 x)=\text{sin}^{-1} (\cos 2 x)+\text{cos}^{-1} (\cos 2 x)=\dfrac{\pi}{2}$$
  • Question 10
    1 / -0
    Find the value of $$\cot (\tan^{-1} a +\cot^{-1} a)$$.
    Solution
    We know,
    $$\tan^{-1} a +\cot^{-1} a=\dfrac{\pi}{2}$$

    Therefore,
    $$\cot (\tan^{-1} a +\cot^{-1} a )=\cot \dfrac{\pi}{2}=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now