Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    $$\sin^{-1}{0}$$ is equal to:

  • Question 2
    1 / -0

    The value of $$x$$ for which $$\sin { \left( \cot ^{ -1 }{ \left( 1+x \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$ is

  • Question 3
    1 / -0

    Assertion (A) : The maximum value of $$f(x)=\sin^{-1}x+\cos^{-1}x+\tan^{-1}x$$ is $$\displaystyle \frac{3\pi}{4}$$
    Reason (R) : $$\sin ^{-1} x>\cos^{-1}x$$ for all $$x$$ in $$R$$

  • Question 4
    1 / -0

    The number of solutions of the equation

    $$2(Sin^{-1}x)^{2}-5Sin^{-1}x+2=0$$ is



  • Question 5
    1 / -0

    The number of triplets $$(x,y,z)$$ satisfying $$\sin^{-1}x+\sin^{-1}y+\cos^{-1}z=2\pi$$ is

  • Question 6
    1 / -0

    The value of $$x$$ where $$x>0$$ $$\displaystyle \tan(\sec^{-1}\frac{1}{x})=\sin(\tan^{-1}2)$$ is

  • Question 7
    1 / -0

    The ascending order of $$A=\sin^{-1}(\log_{3}{2})$$ , $$B=\displaystyle \cos^{-1}\left(\log_{3}\left(\frac{1}{2}\right)\right)$$ , and $$C=\tan^{-1}\left(\log_{1/3} 2 \right)$$ is

  • Question 8
    1 / -0

    Assertion ($$A$$) lf $$0<\displaystyle x<\frac{\pi}{2}$$ then $$\sin^{-1}(cosx)+\cos^{-1}(sinx)=\pi-2x$$
    Reason (R) $$\displaystyle \cos^{-1}x=\frac{\pi}{2}-\sin^{-1}x\forall x\in[0,1]$$


  • Question 9
    1 / -0

    The smallest and the largest values of
    $$\displaystyle \tan^{-1}\left (\dfrac{1-x}{1+x}\right)$$ , $$0\leq x\leq 1$$ are.

  • Question 10
    1 / -0

    The equation 2$$\displaystyle \cos^{-1}x+\sin^{-1}x=\frac{11\pi}{6}$$ has

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now