Self Studies

Inverse Trigonometric Functions Test - 23

Result Self Studies

Inverse Trigonometric Functions Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sin^{-1}{0}$$ is equal to:
    Solution
    As we know that,
    $$\sin{0} = 0$$
    $$\Rightarrow 0 = \sin^{-1}{\left( 0 \right)}$$
    Hence the value of $$\sin^{-1}{\left( 0 \right)}$$ is $$0$$.
  • Question 2
    1 / -0
    The value of $$x$$ for which $$\sin { \left( \cot ^{ -1 }{ \left( 1+x \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$ is
    Solution
    We have, $$\displaystyle \sin { \left( \cot ^{ -1 }{ \left( x+1 \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$
    $$\displaystyle \Rightarrow \cos { \left( \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  }  \right)  } =\cos { \left( \tan ^{ -1 }{ x }  \right)  } $$
    $$\displaystyle \Rightarrow \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  } =2n\pi \pm \tan ^{ -1 }{ x } $$
    Put $$\displaystyle n=0\Rightarrow \frac { \pi  }{ 2 } -\cot ^{ -1 }{ \left( x+1 \right)  } =\pm \tan ^{ -1 }{ x } =\tan ^{ -1 }{ \left( \pm x \right)  } $$
    $$\displaystyle \Rightarrow \frac { \pi  }{ 2 } =\tan ^{ -1 }{ \left( \pm x \right)  } +\cot ^{ -1 }{ \left( x+1 \right)  } $$
    $$\displaystyle \Rightarrow x+1=\pm x\Rightarrow 2x+1=0$$
    $$\displaystyle \therefore x=-\frac { 1 }{ 2 } $$
  • Question 3
    1 / -0
    Assertion (A) : The maximum value of $$f(x)=\sin^{-1}x+\cos^{-1}x+\tan^{-1}x$$ is $$\displaystyle \frac{3\pi}{4}$$
    Reason (R) : $$\sin ^{-1} x>\cos^{-1}x$$ for all $$x$$ in $$R$$
    Solution
    $$f(x)=sin^{-1}(x)+cos^{-1}(x)+tan^{-1}(x)$$
    Now 
    $$sin^{-1}(x)+cos^{-1}(x)=\dfrac{\pi}{2}$$
    Hence
    $$f(x)=tan^{-1}(x)+\dfrac{\pi}{2}$$
    Substituting x=1, we get the maximum as 
    $$\dfrac{\pi}{4}+\dfrac{\pi}{2}$$

    $$=\dfrac{3\pi}{4}$$
    Reason.
    The intersection point of sin(x) and cos(x) is $$x=\dfrac{\pi}{4}$$ between $$[0,\dfrac{\pi}{2}]$$.
    Now cos(x) is a decreasing function in the above interval while sin(x) is an increasing function in the above interval.
    Also.
    $$cos(x)>sin(x)$$ between $$[0,\dfrac{\pi}{4}]$$ while 

    $$sin(x)>cos(x)$$ between $$[\dfrac{\pi}{4},\dfrac{\pi}{2}]$$
    Hence
    $$sin^{-1}(x)>cos^{-1}(x)$$ between $$[\dfrac{1}{\sqrt{2}},1]$$.
    Hence reason is false.
  • Question 4
    1 / -0
    The number of solutions of the equation

    $$2(Sin^{-1}x)^{2}-5Sin^{-1}x+2=0$$ is



    Solution
    Let $$sin ^{-1}x=t , t\epsilon [-\frac{\pi }{2} ,\frac{\pi }{2}]$$
    $$\therefore 2(sin ^{-1}x)^{2}-5 sin ^{2}x+2=0$$
    $$2t^{2}-5t+2=0$$
    $$\displaystyle t=\frac{5\pm \sqrt{25-16}}{4}$$
    $$\displaystyle =\frac{5\pm 3}{4}$$
    $$t=2, \frac{1}{2}$$
    $$sin ^{-1}x=2, \frac{1}{2}$$
    $$sin ^{-1}x=2 or sin ^{-1}x=\frac{1}{2}$$
    $$x=sin (\frac{1}{2}) and x=sin2$$ satisfy the equations.
  • Question 5
    1 / -0
    The number of triplets $$(x,y,z)$$ satisfying $$\sin^{-1}x+\sin^{-1}y+\cos^{-1}z=2\pi$$ is
    Solution
    $$\sin ^{-1}x+\sin ^{-1}y+\cos ^{-1}z=2\pi $$

    We have, 

    $$\dfrac{-\pi}{2}\leq \sin^{-1} x  \leq \dfrac {\pi}{2} $$

    $$\dfrac{-\pi}{2}\leq \sin^{-1} y \leq \dfrac {\pi}{2} $$

    and $$ 0 \leq\cos^{-1} z \leq \pi $$

    thus for $$RHS$$ to become $$2\pi$$ we need to take the maximum values only where,
    $$\sin^{-1}x=\sin^{-1}y=\dfrac{\pi}{2}$$
    $$\cos^{-1}z=\pi$$

    Hence, 
    $$x = y = 1 $$
    $$z = -1 $$

    $$\therefore (x,y,z)=(1,1,-1)$$

    There is only one triplet satisfying the given equation. 
    Hence, option A is correct.
  • Question 6
    1 / -0
    The value of $$x$$ where $$x>0$$ $$\displaystyle \tan(\sec^{-1}\frac{1}{x})=\sin(\tan^{-1}2)$$ is
    Solution
    $$tan(sec^{-1}{\dfrac{1}{x}})=sin(tan^{-1}(2))$$
    $$tan(tan^{-1}(\dfrac{\sqrt{1-x^2}}{x}))=sin(sin^{-1}(\dfrac{2}{\sqrt{5}}))$$
    $$\dfrac{\sqrt{1-x^2}}{x}=\dfrac{2}{\sqrt{5}}$$
    $$\dfrac{1-x^2}{x^2}=\dfrac{4}{5}$$
    $$\dfrac{1}{x^2}-1=\dfrac{4}{5}$$
    $$\dfrac{1}{x^2}=\dfrac{9}{5}$$
    $$x^2=\dfrac{5}{9}$$
    $$x=\pm\dfrac{\sqrt{5}}{3}$$
    Since $$x>0$$
    $$x=\dfrac{\sqrt{5}}{3}$$
  • Question 7
    1 / -0
    The ascending order of $$A=\sin^{-1}(\log_{3}{2})$$ , $$B=\displaystyle \cos^{-1}\left(\log_{3}\left(\frac{1}{2}\right)\right)$$ , and $$C=\tan^{-1}\left(\log_{1/3} 2 \right)$$ is
    Solution
    We have, $$A = \displaystyle \frac{1}{2} <  \ log_{3}{2} < 1, \quad \because \sqrt 3 < 2 <3$$

    $$\Rightarrow \displaystyle \frac{\pi}{6} < \sin^{-1} \left( \log_3 2\right) < \frac{\pi}{2}$$

    $$\displaystyle \because \sin^{-1}{\frac{1}{2}} = \frac{\pi}{6}$$, $$\displaystyle \sin^{-1} {1} = \frac{\pi}{2}$$

    $$\displaystyle B=\cos^{-1}(\log_{3}{1/2})=\cos^{-1}\left(-\log_{3}{2}\right)$$

    $$=\pi -cos ^{-1}(\log _{3}{2}) \quad [\cos^{-1}1/2 =60^{o} , \cos^{-1}(1)=0^{\circ}]$$

    $$C=\tan^{-1}(\log _{1/3}{2})=\tan^{-1}(-\log_{3}{2})=- \tan^{-1}(\log_{3}{2}) \quad [\tan^{-1}(1/2) > 0^{\circ} , \tan^{-1}(1)=45^{\circ}]$$

    $$C \text{ is } negative  , 30^{o} < A < 90^{0} , \dfrac{2\pi }{3} < B < \pi $$
    Arrange By asscending order

    $$\Rightarrow \text{C, A, B}$$
  • Question 8
    1 / -0
    Assertion ($$A$$) lf $$0<\displaystyle x<\frac{\pi}{2}$$ then $$\sin^{-1}(cosx)+\cos^{-1}(sinx)=\pi-2x$$
    Reason (R) $$\displaystyle \cos^{-1}x=\frac{\pi}{2}-\sin^{-1}x\forall x\in[0,1]$$


    Solution
    Given 

    $$ \sin ^ {-1} (\cos x) +\cos ^{-1} (\sin x)$$ 

    $$ \sin ^ {-1} \left(\sin \left(\dfrac\pi 2- x\right)\right) +\cos ^{-1} \left(\cos \left(\dfrac\pi 2- x\right)\right)$$

                             $$\bigg( \sin \theta =\cos \left(\dfrac\pi 2- \theta \right) \bigg)$$ 

    $$ \dfrac \pi 2-x +\dfrac \pi 2-x $$ 

    $$ \pi -2x $$ 


    We know 

    $$ \sin ^ {-1} x+\cos ^ {-1} x=\dfrac \pi 2 $$

    $$ \cos ^ {-1} x=\dfrac \pi 2 -\sin ^ {-1} x$$



  • Question 9
    1 / -0
    The smallest and the largest values of
    $$\displaystyle \tan^{-1}\left (\dfrac{1-x}{1+x}\right)$$ , $$0\leq x\leq 1$$ are.
    Solution
    $$\displaystyle tan ^{-1}(\frac{1-x}{1+x}) $$

    $$0 \leq x\leq 1$$

    $$1\leq x+1 \leq 2$$

    $$1\geq \frac{1}{1+x} \geq \frac{1}{2}$$ 

    $$\displaystyle 0 \leq \frac{1-x}{1+x}\leq 1$$

    $$\therefore x\epsilon [-1,1] \space by\space     x\epsilon [0,1]$$

    So, $$x\epsilon [0,1]$$

    $$\displaystyle tan ^{-1}(\frac{1-x}{1+x}) \space \epsilon [0,\frac{\pi }{4}]$$
  • Question 10
    1 / -0
    The equation 2$$\displaystyle \cos^{-1}x+\sin^{-1}x=\frac{11\pi}{6}$$ has
    Solution
    $$\displaystyle 2 cos^{-1}x+sin ^{-1}x=\frac{11\pi }{6}$$
    $$\displaystyle \therefore cos ^{-1}x=\frac{11\pi }{6}-\frac{\pi }{2}$$                      Since   $$[sin ^{-1}x+cos ^{-1}x=\frac{\pi }{2}]$$
    $$\displaystyle cos ^{-1}x=\frac{8\pi }{6}=\frac{4\pi }{3}$$
    But range of $$cos^{-1}x\epsilon [0,\pi ]$$
    So, this equation has no solution.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now