Self Studies
Selfstudy
Selfstudy

Inverse Trigonometric Functions Test - 25

Result Self Studies

Inverse Trigonometric Functions Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\theta\equiv sin^{-1}x+cos^{-1}x-tan^{-1}x,\ 0\leq x\leq 1$$, then the smallest interval in which $$\theta$$ lies is given by ?
    Solution
    Given $$0\le x\le 1\implies \tan^{-1} x\in [\tan^{-1}0,\tan^{-1}1]\implies \tan^{-1} x\in [0,\frac{\pi}{4}]\implies -\tan^{-1} x\in [-\frac{\pi}{4},0]$$

    $$\theta=\sin^{-1} x+\cos^{-1} x-\tan^{-1} x=\dfrac{\pi}{2} -\tan^{-1} x$$     $$(\because \sin^{-1} x+\cos^{-1} x=\dfrac{\pi}{2})$$

    As $$-\tan^{-1} x\in [-\frac{\pi}{4},0]$$

    $$\implies \dfrac{\pi}{2}-\tan^{-1} x\in [\frac{\pi}{4},\frac{\pi}{2}]$$

    $$\implies \dfrac{\pi}{4}\le\theta\le \dfrac{\pi}{2}$$
  • Question 2
    1 / -0
    The value of sin $$\sin \left\{ {{{\tan }^{ - 1}}\left( {\tan \frac{{7\pi }}{6}}

    \right) + {{\cos }^{ - 1}}\left( {\cos \frac{{7\pi }}{3}} \right)}

    \right\}$$ is

    Solution
    $$Sin \left \{ \underbrace{tan^-1 \left (tan \frac{7\pi}{6} \right )} + \underbrace{cos^{-1}\left ( cos \frac{7\pi}{3} \right )}  \right \}$$
                            $$A$$                                $$B$$
    $$A=tan^{-1} \left ( tan \left ( \pi + \frac{\pi}{6} \right ) \right )$$
    $$=tan^{-1} \left ( tan \frac{\pi}{6} \right ) =\frac{\pi}{6}$$
    $$B=cos^{-1} \left ( cos \left ( 2\pi + \frac{\pi}{3} \right ) \right )$$
    $$=\frac{\pi}{3}$$              $$\therefore  sin \left ( \frac{\pi}{6}+  \frac{\pi}{3} \right ) = sin \left ( \frac{\pi}{2} \right ) =1$$
  • Question 3
    1 / -0
    If $$\alpha \epsilon \left ( 0,\dfrac{\pi}{2}\right )$$, then the value of $$\tan ^{-1}(\cot \alpha )-\cot ^{-1}(\tan \alpha )+\sin ^{-1}(\sin \alpha )-\cos ^{-1}(\cos \alpha )$$ is equal to
    Solution
    $$tan^{ -1 }\left( cot\alpha  \right) -cot^{ -1 }\left( tan\alpha  \right) +sin^{ -1 }\left( sin\alpha  \right) -cos^{ -1 }\left( cos\alpha  \right) \\ =tan^{ -1 }\left( tan\left( \cfrac { \pi  }{ 2 } -\alpha  \right)  \right) -cot^{ -1 }\left( cot\left( \cfrac { \pi  }{ 2 } -\alpha  \right)  \right) +sin^{ -1 }sin\alpha -cos^{ -1 }cos\alpha \\ =\left( \cfrac { \pi  }{ 2 } -\alpha  \right) -\left( \cfrac { \pi  }{ 2 } -\alpha  \right) +\alpha -\alpha =0$$
  • Question 4
    1 / -0
    If $$\tan ^{-1}\dfrac{\sqrt{1+x^{2}}-1}{x}=4^{\circ}$$,then
    Solution
    Substituting $$x=tanA$$

    $$\tan^{-1}(\dfrac{\sec A-1}{\tan A})$$

                     $$=\tan^{-1}(\dfrac{1-\cos A}{\sin A})$$

                     $$=\tan^{-1}(\tan(\dfrac{A}{2}))$$............Using $$\cos A=1-2\sin^2\dfrac A2$$

            $$4^{0}$$     $$=\dfrac{A}{2}$$

    $$\Rightarrow A=8^{0}$$

    $$\tan^{-1}(x)=8^{0}$$

    $$x=\tan(8^{0})$$
  • Question 5
    1 / -0
    If $${\cot ^{ - 1}}x + {\cot ^{ - 1}}y + {\cot ^{ - 1}}z = \dfrac{\pi }{2}$$  then $$x+y+z$$ equals
    Solution
    $$\cot^{-1}x+\cot^{-1}y=\dfrac{\pi}{2} -\cot^{-1}z$$
    $$\tan(\cot^{-1}x+\cot^{-1}y)=\tan \left ( \dfrac{\pi}{2} - \cot^{-1}z \right )$$
    $$\displaystyle \dfrac{\tan(\cot^{-1}x)+\tan (\cot^{-1}y)}{1- \tan (\cot^{-1}x)\tan (\cot^{-1}y)}=z$$
    $$\dfrac{\dfrac{1}{x} + \dfrac{1}{y}}{1-\dfrac{1}{xy}}=z$$
    $$\dfrac{x+y}{xy-1}=z$$
    $$x+y+z=xyz$$
  • Question 6
    1 / -0
    If $$sin\left\{ \sin ^{ -1 }{ \cfrac { 1 }{ 5 }  } +\cos ^{ -1 }{ x }  \right\} =1$$, then $$x$$ is equal to
    Solution
    Given, $$sin \left(sin^{-1} \left(\displaystyle\frac{1}{5} \right)+cos^{-1}(x) \right)=1$$

    $$sin^{-1} \left(\displaystyle\frac{1}{5} \right)+cos^{-1}(x)=sin^{-1}(1)$$

    $$sin^{-1} \left(\displaystyle\frac{1}{5} \right)+cos^{-1}(x)=\dfrac{\pi}{2}$$

    $$cos^{-1}(x)=\displaystyle\frac{\pi}{2}-sin^{-1} \left(\displaystyle\frac{1}{5} \right)$$

    $$cos^{-1}(x)=cos^{-1} \left(\displaystyle\frac{1}{5} \right)$$

    $$\therefore x=\displaystyle\frac{1}{5}$$
  • Question 7
    1 / -0
    If $$0\le x\le 1$$, then $$\tan { \left\{ \cfrac { 1 }{ 2 } \sin ^{ -1 }{ \cfrac { 2x }{ 1+{ x }^{ 2 } } +\cfrac { 1 }{ 2 } \cos ^{ -1 }{ \cfrac { 2x }{ 1+{ x }^{ 2 } }  }  }  \right\}  } $$
    Solution
    $$tan[\frac{1}{2}(sin^{-1}(\frac{2x}{1+x^2})+cos^{-1}(\frac{2x}{1+x^2}))]$$
    $$=tan[\frac{1}{2}(sin^{-1}(\theta)+cos^{-1}(\theta))]$$
    $$=tan(\frac{\pi}{2(2)})$$
    $$=tan(\frac{\pi}{4})$$
    $$=1$$
  • Question 8
    1 / -0
    $$\tan { \left( \cot ^{ -1 }{ x }  \right)  } $$ is equal to

    Solution
    Given, $$\tan(cot^{-1}(x))$$
    $$=\tan(\tan^{-1}(\dfrac{1}{x}))$$
    $$=\dfrac{1}{x}$$.
    Also
    $$\tan(\cot^{-1}(x))$$
    $$=\tan(\dfrac{\pi}{2}-\tan^{-1}(x))$$
    $$=\cot(\tan^{-1}(x))$$
  • Question 9
    1 / -0
    If $$\displaystyle x$$ takes negative permissible value, then $$\displaystyle \sin ^{-1}x$$ is equal to
    Solution
    $$sin^{-1}(x)$$
    $$=cos^{-1}(\sqrt{1-x^2})$$ , for $$x>0$$
    Since x takes negative permissible value.
    $$sin^{-1}(x)=-cos^{-1}(\sqrt{1-x^2})$$
  • Question 10
    1 / -0
    $$\sec ^{ 2 }{ \left( \tan ^{ -1 }{ 2 }  \right) +cosec ^{ 2 }{ \left( \cot ^{ -1 }{ 3 }  \right)  }  } $$=
    Solution
    The given question can be re-written as
    $$1+\tan^{2}(\tan^{-1}(2))+1+\cot^{2}(\cot^{-3})$$
    $$=2+2^{2}+3^{2}$$
    $$=2+4+9$$
    $$=15$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now