Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    $$\displaystyle \tan^{-1}\left [ \cfrac{\cos\:x}{1+\sin\:x} \right ]$$ is equal to 

  • Question 2
    1 / -0

    The value of $$\displaystyle tan(sin^{-1}(cos(sin^{-1}x)))tan(cos^{-1}(sin(cos^{-1}x)))$$, where $$x\:\epsilon\:(0,1)$$, is equal to 

  • Question 3
    1 / -0

    The value of $$\displaystyle sin^{-1}(x^{2}-4x+6)+cos^{-1}(x^{2}-4x+6)$$ for all $$x\:\epsilon\:R$$ is

  • Question 4
    1 / -0

    Which of the following is the solution set of the equation $$\displaystyle 2cos^{-1}x=cot^{-1}\left(\frac{2x^{2}-1}{2x\sqrt{1-x^{2}}}\right)$$

  • Question 5
    1 / -0

    If $$\displaystyle \cos^{-1} x = a + \tan^{-1} \frac{\sqrt{1 - x^{b}}}{cx}$$ for $$\displaystyle x < 0$$.
    Find the value of a ,b and c.

  • Question 6
    1 / -0

    The equation $$\displaystyle 3cos^{-1}x-\pi\:x-\frac{\pi}{2}=0$$ has

  • Question 7
    1 / -0

    $$\sin ^{ -1 }{ \left( \cos { \left( \sin ^{ -1 }{ x }  \right)  }  \right)  } +\cos ^{ -1 }{ \left( \sin { \left( \cos ^{ -1 }{ x }  \right)  }  \right)  } $$ is equal to

  • Question 8
    1 / -0

    The number of real solution of the equation $$\displaystyle \sqrt{1+cos2x}=\sqrt{2}sin^{-1}(sin\:x),-\pi< x\leq \pi$$, is

  • Question 9
    1 / -0

    There exists a positive real number $$x$$ satisfying $$\displaystyle \cos(\tan^{-1}x)=x$$. Then the value of $$\displaystyle \cos^{-1}\left(\frac{x^{2}}{2}\right)$$ is 

  • Question 10
    1 / -0

    The value of $$\displaystyle \lim_{|x|\to\infty}cos(tan^{-1}(sin(tan^{-1}x)))$$ is equal to 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now