Self Studies

Inverse Trigonometric Functions Test - 30

Result Self Studies

Inverse Trigonometric Functions Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of $$ \lim_{\left | x \right |\rightarrow \infty} $$ $$ \cos \left ( \tan^{-1}\left ( \sin \left ( \tan^{-1} x \right ) \right ) \right ) $$ is equal to :
    Solution
    Given, $$lim_{|x|\rightarrow \infty}\cos(\tan^{-1}(\sin(\tan^{-1}(x))))$$

    $$=\cos \left(\tan^{-1} \left (\sin \left (\cfrac{\pi}{2} \right) \right) \right)$$  $$[\tan \dfrac{\pi}{2}=\infty]$$

    $$=\cos(\tan^{-1}(1))$$

    $$=\cos \left(\dfrac{\pi}{4} \right)$$

    $$=\dfrac{1}{\sqrt{2}}$$
  • Question 2
    1 / -0
    $$ \tan^{-1}a +\tan^{-1}b $$, where $$ a> 0, b> 0, ab> 1 $$ is equal to :
    Solution
    The value of $$\tan^{-1}(a)+\tan^{-1}(b)$$

    $$\tan^{-1}(a)+\tan^{-1}(b)$$$$=\tan^{-1}(\dfrac{a+b}{1-ab})$$

    Now $$ab>1$$ and $$a>0,$$ $$b>0$$

    Therefore, it is in first quadrant.

    Hence, $$\tan^{-1}(a)+\tan^{-1}(b)=$$$$\tan^{-1}\left(\dfrac{a+b}{1-ab}\right)$$
  • Question 3
    1 / -0
    Let $$ f(x)=cosec^{-1}\:\left [ 1+\sin ^{2} x\right ] $$, where $$ \left [ . \right ]  $$ denotes the greatest integer function. Then $$ f(x) $$ equals;
    Solution
    $$-1\le \sin x\le 1\Rightarrow 0\le \sin^{ 2 } x\le 1$$

    For $$\sin^{ 2 }x=0\quad f\left( x \right) =cosec^{ -1 }\left\{ 1+0 \right\} =cosec^{ -1 }1=\cfrac { \pi  }{ 2 } $$

    And for $$\sin^{ 2 }x=1\quad f\left( x \right) =cosec^{ -1 }\left\{ 1+1 \right\} =cosec^{ -1 }2$$
  • Question 4
    1 / -0
    If $$\displaystyle \tan \left ( \cos^{-1} x \right ) = \sin \left ( \cot^{-1} \frac{1}{2} \right )$$, then find the value of $$\displaystyle x$$
    Solution
    Given, $$\displaystyle \tan { \left( \cos ^{ -1 }{ x }  \right)  } =\sin { \left( \cot ^{ -1 }{ \frac { 1 }{ 2 }  }  \right)  } $$
    $$\displaystyle \Rightarrow \tan { \left( \tan ^{ -1 }{ \left( \frac { \sqrt { 1-{ x }^{ 2 } }  }{ x }  \right)  }  \right)  } =\sin { \left( \sin ^{ -1 }{ \left( \frac { 2 }{ \sqrt { 5 }  }  \right)  }  \right)  } $$
    $$\displaystyle \Rightarrow \frac { \sqrt { 1-{ x }^{ 2 } }  }{ x } =\frac { 2 }{ \sqrt { 5 }  } \Rightarrow x=\frac { \sqrt { 5 }  }{ 3 } $$
  • Question 5
    1 / -0
    If $$\tan^{-1}\left ( \dfrac{x}{\sqrt{a^p-x^q}} \right )= \sin^{-1}\left ( \dfrac{x}{a} \right ),a> 0$$. Find the value of p and q.

    Solution
    Let   $$\displaystyle \sin^{-1}\frac{x}{a} = \theta\Rightarrow \frac{x}{a} =  \sin \theta$$

    $$\displaystyle \Rightarrow \tan\theta = \frac{\sin \theta}{\cos\theta} = \frac{x/a}{\sqrt{1-x^2/a^2}}=\frac{x}{\sqrt{a^2-x^2}}$$

    $$\therefore\displaystyle \theta = \tan^{-1} \frac{x}{\sqrt{a^2-x^2}}= \sin^{-1}\frac{x}{a}$$

    $$\Rightarrow p=2, \ q=2$$
  • Question 6
    1 / -0
    If  $$\displaystyle \tan^{-1} \frac{1}{\sqrt{x^{a} - b}} = \frac{\pi}{c} - \sec^{-1} x$$, $$\displaystyle \left | x \right | > 1$$.
    Find the value of a,b and c.
    Solution
    We know that, $$\displaystyle \tan^{-1} \frac{1}{\sqrt{x^{2} - 1}} = \frac{\pi}{2} - \sec^{-1} x$$
    Comparing this with the given  $$\displaystyle \tan^{-1} \frac{1}{\sqrt{x^{a} - b}} = \frac{\pi}{c} - \sec^{-1} x$$, $$\displaystyle \left | x \right | > 1$$.

    We get the unknown parameter $$a=2,b=1,c=2$$
  • Question 7
    1 / -0
    The value of $$\displaystyle \sin ^{-1}\left ( \sin 2 \right )$$ is?
    Solution
    To find value of $$\sin^{-1}(\sin(2))$$
    $$\pi  \space rads=180^{0}$$
    $$1 \space rad=\dfrac{180^{0}}{\pi}$$
    $$1 \space rad=57.29^{0}$$
    Hence
    $$2\space rads=114.59^{0}$$
    Hence it is in the second quadrant.
    Therefore 
    $$\sin^{-1}(\sin(2))$$
    $$=\sin^{-1}(\sin(\pi-2))$$
    $$=\pi-2$$
  • Question 8
    1 / -0
    Find the minimum value the function $$\displaystyle f\left ( x \right )=\frac{\pi ^{2}}{16\cot^{-1}\left ( -x \right )}-\cot^{-1}x$$

    Solution
    $$\displaystyle f\left ( x \right )=\frac{\pi ^{2}}{16\cot^{-1}\left (

    -x \right )}-\left ( \pi -\cot^{-1}\left ( -x \right ) \right )$$
              
    $$\displaystyle =\cot^{-1}\left ( -x \right )+\frac{\pi ^{2}}{16\cot^{-1}\left ( -x \right )}-\pi $$
             
    $$\displaystyle =\left ( \sqrt{\cot^{-1}\left ( -x \right )}+\frac{\pi

    }{4\sqrt{\cot^{-1}\left ( -x \right )}} \right )^2+\frac{\pi }{2}-\pi $$,   

    Since $$\left [ \cot^{-1} \theta > 0\right ]$$$$\displaystyle \geq -\frac{\pi }{2}$$

    $$\therefore $$   $$\displaystyle f_{min}=-\frac{\pi }{2}$$
  • Question 9
    1 / -0
    For  $$\displaystyle \tan^{-1}\left ( \frac{1-x}{1+x} \right )$$, $$0\leq x\leq 1$$.
    What is the sum of the smallest and the largest values of function.
    Solution
    Let  $$\displaystyle f\left ( x \right )=\tan^{-1}\left ( \frac{1-x}{1+x} \right )$$, $$0\leq x\leq 1$$

    Now $$\displaystyle \frac{1-x}{1+x}=\frac{2}{1+x}-1$$

    Given $$0\leq x\leq 1$$

    $$\Rightarrow $$   $$\displaystyle \frac{2}{1+x}-1\in \left [ 0, 1 \right ]$$

    $$\Rightarrow

    $$   $$\displaystyle \tan^{-1}\left ( \frac{1-x}{1+x} \right )\in

    \left [ \tan^{-1}0, \tan^{-1} 1\right ]$$   or   $$\displaystyle \left [

    0, \frac{\pi }{4} \right ]$$
  • Question 10
    1 / -0
    Find the number of real solutions :
    $$ \tan^{-1}\sqrt{x\left ( x+1 \right )}+\sin^{-1}\sqrt{x^2+x+1}= \dfrac{\pi }{2} $$
    Solution
    Our requirement is $$x^{ 2 }+x\ge 0$$
    Second requirement $$\sqrt { { x }^{ 2 }+x+1 } \le 1$$
    $$\Rightarrow { x }^{ 2 }+x\le 0$$
    Hence $$x=0,x=-1$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now