Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    The domain of $$f(x) =\displaystyle \frac{\sin ^{-1}x}{x}$$ is

  • Question 2
    1 / -0

    Number of triplets $$\left ( x, y, z \right )$$ satisfying $$\sin ^{-1}x+\sin ^{-1}y+\cos ^{-1}z=2\pi$$ is

  • Question 3
    1 / -0

    The equation $$2 cos^{-1} x = sin^{-1} (2 x \sqrt{1 - x^2}) $$ is valid for all values of x satisfying

  • Question 4
    1 / -0

    If $$\displaystyle \tan^{-1}{\left(\frac{a}{x}\right)}+\tan^{-1}{\left(\frac{b}{x}\right)}=\frac{\pi}{2}$$, then $$x$$ is equal to :

  • Question 5
    1 / -0

    If $$ 2 sin h^{-1}\left ( \dfrac{a}{\sqrt{1-a^{2}}} \right ) = log\left ( \dfrac{1+X}{1-X} \right )$$ then X=

  • Question 6
    1 / -0

    The sum of $$\cot ^{ -1 }{ 2 } +\cot ^{ -1 }{ 8 } +\cot ^{ -1 }{ 18 } ....\infty =\cfrac { \pi  }{ \lambda  } $$, then $$\lambda $$ is

  • Question 7
    1 / -0

    The domain of the function $$f(x)=\sqrt{cos^{-1}\begin{pmatrix}\dfrac{1-|x|}{2}\end{pmatrix}}$$ is

  • Question 8
    1 / -0

    The trigonometric equation $$\sin^{-1}x=2\, \sin^{-1}2a$$ has a real solution, if

  • Question 9
    1 / -0

    $$\tan^{-1}(x + \sqrt{1 + x^{2}})$$ =

  • Question 10
    1 / -0

    The value of $$\cot^{-1} \left[ \dfrac{\sqrt{1 - \sin x} +\sqrt{1 + \sin x}}{\sqrt{(1 - \sin x)} - \sqrt{(1 + \sin x)}} \right]$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now