Self Studies

Inverse Trigonometric Functions Test - 33

Result Self Studies

Inverse Trigonometric Functions Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of $$f(x) =\displaystyle \frac{\sin ^{-1}x}{x}$$ is
    Solution
    $$f(x)=\displaystyle\frac{\sin ^{-1}x}{x}=\frac{g(x)}{t(x)},{t(x)}\neq 0$$

    $${t(x)}\neq 0$$

    $$\Rightarrow x\neq 0$$

    Domain of $$t(x)$$ is $$R-\{0\}$$

    Again domain of $$g(x)$$ is $$\left [ -1,1 \right ]$$

    Now using concept domain of $$f(x) =\displaystyle\frac{g(x)}{t(x)}$$

    domain of $$f(x) =$$ Domain of $$g(x)$$ - set of those points for which $$t(x)=0$$ if $$g(x), \ t(x)$$ is defined $$\forall x\epsilon R$$

    $$\therefore$$ Domain of $$f(x) =\left [ -1,1 \right ]-\left \{ 0 \right \}$$
  • Question 2
    1 / -0
    Number of triplets $$\left ( x, y, z \right )$$ satisfying $$\sin ^{-1}x+\sin ^{-1}y+\cos ^{-1}z=2\pi$$ is
    Solution
    Let $$f(x, y, z)=\sin ^{-1}x+\sin ^{-1}y+\cos^{-1}z$$
    It will attain the value $$2\pi$$ only if $$\sin ^{-1}x=\sin ^{-1}y=\displaystyle\frac{\pi }{2}$$ and $$\cos^{-1}z=\pi$$.
    This is possible only if $$x = y = 1$$ 
    and $$z=-1$$.
    Hence there is only one solution $$f(1,1,-1)=2\pi$$

  • Question 3
    1 / -0
    The equation $$2 cos^{-1} x = sin^{-1} (2 x \sqrt{1 - x^2}) $$ is valid for all values of x satisfying
    Solution
    If we denote $$cos^{-1}x$$ by $$y$$, then
    since $$0 \leq cos^{-1} x \leq \pi \Rightarrow 0 \leq 2 y \leq 2 \pi$$           (1)
    Also since $$-\pi/2 \leq sin^{-1} (2 x \sqrt{1 - x^2}) \leq \pi/2 \Rightarrow - \pi/2 \leq sin^{-1} sin (2y) \leq \pi/2$$
    $$\Rightarrow - \pi/2 \leq 2y \leq \pi/2$$               (2)
    From (1) and (2) we find $$0 \leq 2y \leq \pi /2$$
    $$\Rightarrow 0 \leq y \leq \pi/4 \Rightarrow 0 \leq cos^{-1} x \leq \pi/4$$
    which holds if $$1/\sqrt{2} \leq x \leq 1$$
  • Question 4
    1 / -0
    If $$\displaystyle \tan^{-1}{\left(\frac{a}{x}\right)}+\tan^{-1}{\left(\frac{b}{x}\right)}=\frac{\pi}{2}$$, then $$x$$ is equal to :
    Solution
    $$\tan^{-1}\left(\dfrac{a}{x}\right)+\tan^{-1}\left( \dfrac{b}{x}\right)=\dfrac{\pi}{2}$$
    $$\Rightarrow \tan^{-1}\left(\dfrac{a}{x}\right)=\dfrac{\pi}{2}-\tan^{-1}\left(\dfrac{b}{x} \right)=\cot^{-1}\left(\dfrac{b}{x} \right)$$
    $${\left(\because \tan^{-1}\theta+\cot^{-1}\theta =\dfrac{\pi}{2}\right)} $$
    $$\Rightarrow \tan^{-1}\left(\dfrac{a}{x}\right)=\cot^{-1}\left(\dfrac{b}{x} \right)=\tan^{-1}\left(\dfrac{x}{b}\right)$$
    $$\Rightarrow \dfrac{a}{x}=\dfrac{x}{b}\Rightarrow x^2=ab$$
    $$\Rightarrow x=\pm \sqrt {ab}$$

  • Question 5
    1 / -0
    If $$ 2 sin h^{-1}\left ( \dfrac{a}{\sqrt{1-a^{2}}} \right ) = log\left ( \dfrac{1+X}{1-X} \right )$$ then X=
    Solution
    As we know that
    $$\sinh^{-1} x=\log(x+\sqrt{x^2+1})$$
    $$2\sinh^{-1} \bigg(\dfrac{a}{\sqrt{1-a^2}}\bigg)=2\log\bigg(\dfrac{a}{\sqrt{1-a^2}}+\sqrt{\dfrac{a^2}{1-a^2}+1}\bigg)$$
                                            $$=2\log \bigg(\dfrac{a+\sqrt{a^2+1-a^2}}{\sqrt{1-a^2}}\bigg)$$
                                             $$=2\log \bigg(\dfrac{a+1}{\sqrt{1-a^2}}\bigg)$$
                                             $$=\log\bigg(\dfrac{(1+a)^2}{(1-a)(1+a)}\bigg)$$
                                             $$=\log \bigg(\dfrac{1+a}{1-a}\bigg)$$
    But given $$2\sinh^{-1} \bigg(\dfrac{a}{\sqrt{1-a^2}}\bigg)=\log \bigg(\dfrac{1+X}{1-X}\bigg)$$
    So $$X=a$$
  • Question 6
    1 / -0
    The sum of $$\cot ^{ -1 }{ 2 } +\cot ^{ -1 }{ 8 } +\cot ^{ -1 }{ 18 } ....\infty =\cfrac { \pi  }{ \lambda  } $$, then $$\lambda $$ is
    Solution
    $$\cot^{-1}(2)+\cot^{-1}(8)+\cot^{-1}(18).......\infty =\dfrac{\pi}{\lambda}$$
    from L.H.S.
    $$n^{th}$$ term is $$\Rightarrow \cot^{-1}(2n^2)$$
    $$=\tan^{-1}\left(\dfrac{1}{2n^2}\right)$$
    $$=\tan^{-1}\left(\dfrac{2}{4n^2}\right)$$
    $$=\tan^{-1}\left(\dfrac{2}{4n^2-1+1}\right)$$
    $$=\tan^{-1}\left(\dfrac{2}{(2n-1)(2n+1)+1}\right)$$
    $$=\tan^{-1}\left(\dfrac{(2n+1)-(2n-1)}{(2n-1)(2n+1)+1}\right)$$
    Now,
    $$\tan^{-1}A-\tan^{-1}B=\tan^{-1}\left(\dfrac{A-B}{1+AB}\right)$$
    $$A=2n+1$$; $$B=2n-1$$
    $$=\tan^{-1}(2n+1)-\tan^{-1}(2n-1)$$
    $$n=1, 2, 3$$...
    $$\Rightarrow \tan^{-1}(3)-\tan^{-1}(1)+\tan^{-1}(5)-\tan^{-1}(3)+.....\tan^{-1}\infty$$
    $$\Rightarrow \tan^{-1}(\infty)-\tan^{-1}(1)$$
    $$\Rightarrow \dfrac{\pi}{2}-\dfrac{\pi}{4}=\dfrac{\pi}{4}$$
    Comparing RHS to 
    $$\lambda =4$$.

  • Question 7
    1 / -0
    The domain of the function $$f(x)=\sqrt{cos^{-1}\begin{pmatrix}\dfrac{1-|x|}{2}\end{pmatrix}}$$ is
    Solution
    $$f(x)=\sqrt{cos^{-1}\begin{pmatrix}\dfrac{1-|x|}{2}\end{pmatrix}}$$

    for $$f(x)$$ to be defined $$\cos^{-1}{\left(\dfrac{1-|x|}{2}\right)}\ge0$$

    $$\Rightarrow \dfrac{-\pi}{2}\le \cos^{-1}{\left(\dfrac{1-|x|}{2}\right)}\le \dfrac{\pi}{2}$$

    $$\Rightarrow-1 \le \dfrac{1-|x|}{2} \le 1$$

    $$\Rightarrow\;-2\le 1-|x| \le 2$$
    $$\Rightarrow\;-2-1\le -|x| \le 2-1$$
    $$\Rightarrow\;-3 \le -|x| \le 1$$.
    $$\Rightarrow\;-1\le|x|\le3$$

    $$\Rightarrow |x|\ge-1$$ but $$|x|$$ is always positive

    $$\Rightarrow |x|\le3$$
    $$\Rightarrow -3\le x\le3$$
    $$\Rightarrow\;x\,\in[-3,\,3]$$
  • Question 8
    1 / -0
    The trigonometric equation $$\sin^{-1}x=2\, \sin^{-1}2a$$ has a real solution, if
    Solution
    We have that 
    $$\displaystyle \frac{-\pi}{2} \le \sin^{-1}x\le \frac{\pi}{2}$$

    $$\Rightarrow \dfrac{-\pi}{2}\le 2\, \sin^{-1}2a\le \dfrac{\pi}{2}$$

    $$\Rightarrow \dfrac{-\pi}{4}\le \sin^{-1}2a\le \dfrac{\pi}{4}$$

    $$\Rightarrow \sin\left(\dfrac{-\pi}{4}\right)\le 2a \le \sin\left(\dfrac{\pi}{4}\right)$$

    $$\Rightarrow \dfrac{-1}{\sqrt{2}}\le 2a \le \dfrac{1}{\sqrt{2}}$$

    $$\Rightarrow \dfrac{-1}{2\sqrt{2}}\le a \le \dfrac{1}{2\sqrt{2}}\Rightarrow |a|\le \dfrac{1}{2\sqrt{2}}$$
  • Question 9
    1 / -0
    $$\tan^{-1}(x + \sqrt{1 + x^{2}})$$ =
    Solution
    Let, $$x= \tan \theta$$
    $$\therefore 1+x^2=\space 1+\tan^2 \theta = \sec^2 \theta$$    .....(i)
    Given, $$ \tan^{-1} (x+ \sqrt{1+x^2})$$
    $$ = \tan^{-1} (\tan \theta +\sqrt {\sec ^2 \theta})$$  ....{From (i)}
    $$ = \tan ^{-1} (\tan \theta + \sec \theta)$$
    $$ = \tan ^{-1} \left (\dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos\theta}\right)$$
    $$ =\tan ^{-1} \left (\dfrac{1+\sin \theta }{\cos \theta}\right)$$
    $$= \tan ^{-1} \left (\dfrac{2 \sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2} +\sin^2\dfrac {\theta}{2}+\cos^2\dfrac{\theta}{2}}{\cos^2\dfrac{\theta}{2}-\sin ^2 \dfrac{\theta}{2}}\right)$$
    $$ = \tan^-1 \left ( \dfrac{\left (\cos\dfrac{\theta}{2}+ \sin \dfrac{\theta}{2}\right)^2}{\left (\cos \dfrac{\theta}{2}-\sin\dfrac{\theta}{2}\right)(\cos \dfrac{\theta}{2}+\sin\dfrac{\theta}{2})}\right)$$
    $$=\tan^{-1}\left (\dfrac {\cos \dfrac {\theta}{2}+\sin \dfrac {\theta}{2} }{\cos \dfrac {\theta}{2}-\sin \dfrac {\theta}{2}}\right)$$
    Dividing by $$ \cos \dfrac{\theta}{2} $$ on both numerator and denominator, we get
    $$=\tan ^{-1} \dfrac{1+\tan \dfrac{\theta}{2}}{1- \tan \dfrac{\theta}{2}} $$
    $$= \tan ^{-1} \tan \left (\dfrac{\pi}{4}+\dfrac{\theta}{2}\right)$$
    $$=\dfrac {\pi}{4}+\dfrac {\theta}{2}$$
    $$= \dfrac{\pi}{4}+\dfrac{1}{2}\tan^{-1}x$$    ....Resubstituting value of $$\theta$$
  • Question 10
    1 / -0

    The value of $$\cot^{-1} \left[ \dfrac{\sqrt{1 - \sin x} +\sqrt{1 + \sin x}}{\sqrt{(1 - \sin x)} - \sqrt{(1 + \sin x)}} \right]$$ is

    Solution
    We have $$\cot^{-1} \, \left[ \dfrac{\sqrt{1 - \sin x} +\sqrt{1 + \sin x}}{\sqrt{(1 - \sin x)} - \sqrt{(1 + \sin x)}} \right]$$

    $$= \cot^{-1} \left[ \dfrac{ \sqrt {\left( \cos \dfrac{x}{2}  - \sin \dfrac{x}{2}  \right)^2} + \sqrt {\left( \cos \dfrac{x}{2}  + \sin \dfrac{x}{2}  \right)^2} }{ \sqrt {\left( \cos \dfrac{x}{2}  - \sin \dfrac{x}{2}  \right)^2} - \sqrt {\left( \cos \dfrac{x}{2}  + \sin \dfrac{x}{2}  \right)^2 }} \right]$$

    $$= \cot^{-1} \left[ \dfrac{ \left( \cos \dfrac{1}{2} x - \sin \dfrac{1}{2} x \right) + \left( \cos \dfrac{1}{2} x + \sin \dfrac{1}{2} x \right) }{ \left( \cos \dfrac{1}{2} x - \sin \dfrac{1}{2} x \right) - \left( \cos \dfrac{1}{2} x + \sin \dfrac{1}{2} x \right) } \right]$$

    $$ = \cot^{-1} \left( - \cot \dfrac{1}{2} x \right) = \cot^{-1} \, \cot \left( \pi  - \dfrac{1}{2} x \right) = \pi  - \dfrac{1}{2} x$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now