Let, $$x= \tan \theta$$
$$\therefore 1+x^2=\space 1+\tan^2 \theta = \sec^2 \theta$$ .....(i)
Given, $$ \tan^{-1} (x+ \sqrt{1+x^2})$$
$$ = \tan^{-1} (\tan \theta +\sqrt {\sec ^2 \theta})$$ ....{From (i)}
$$ = \tan ^{-1} (\tan \theta + \sec \theta)$$
$$ = \tan ^{-1} \left (\dfrac{\sin \theta }{\cos \theta }+\dfrac{1}{\cos\theta}\right)$$
$$ =\tan ^{-1} \left (\dfrac{1+\sin \theta }{\cos \theta}\right)$$
$$= \tan ^{-1} \left (\dfrac{2 \sin \dfrac{\theta}{2} \cos \dfrac{\theta}{2} +\sin^2\dfrac {\theta}{2}+\cos^2\dfrac{\theta}{2}}{\cos^2\dfrac{\theta}{2}-\sin ^2 \dfrac{\theta}{2}}\right)$$
$$ = \tan^-1 \left ( \dfrac{\left (\cos\dfrac{\theta}{2}+ \sin \dfrac{\theta}{2}\right)^2}{\left (\cos \dfrac{\theta}{2}-\sin\dfrac{\theta}{2}\right)(\cos \dfrac{\theta}{2}+\sin\dfrac{\theta}{2})}\right)$$
$$=\tan^{-1}\left (\dfrac {\cos \dfrac {\theta}{2}+\sin \dfrac {\theta}{2} }{\cos \dfrac {\theta}{2}-\sin \dfrac {\theta}{2}}\right)$$
Dividing by $$ \cos \dfrac{\theta}{2} $$ on both numerator and denominator, we get
$$=\tan ^{-1} \dfrac{1+\tan \dfrac{\theta}{2}}{1- \tan \dfrac{\theta}{2}} $$
$$= \tan ^{-1} \tan \left (\dfrac{\pi}{4}+\dfrac{\theta}{2}\right)$$
$$=\dfrac {\pi}{4}+\dfrac {\theta}{2}$$
$$= \dfrac{\pi}{4}+\dfrac{1}{2}\tan^{-1}x$$ ....Resubstituting value of $$\theta$$