Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    Number of solution(s) to the equation$$ $$ $${\cos ^{ - 1}}x + {\sin ^{ - 1}}\left( {\dfrac{x}{2}} \right) = \dfrac{\pi }{6}\,$$ is/are 

  • Question 2
    1 / -0

    $$\displaystyle \sum^{\infty}_{r=1}\tan^{-1}\left(\dfrac {3}{r^{2}-r+9}\right)$$ is -

  • Question 3
    1 / -0

    $$If\,\cos \left( {2{{\sin }^{ - 1}}x} \right) = \frac{1}{9},\,then\,\,x\,\,is\,\,equal\,\,to$$

  • Question 4
    1 / -0

    If $${ cos }^{ -1 }\dfrac { 3 }{ 5 } -{ sin }^{ -1 }\dfrac { 4 }{ 5 } ={ cos }^{ -1 }x$$, then x is equal to -

  • Question 5
    1 / -0

    Number of solution of the equation $$\tan^{-1}\left(\dfrac {1}{x-1}+\dfrac {1}{x-2}+\dfrac {1}{x-3}+\dfrac {1}{x-4} \right)+\cos^{-1}(x)=\dfrac {3\pi}{4}-\sin^{-1}(x)$$ are

  • Question 6
    1 / -0

    The range of the function $$f(x)=\ell n\ (\sin^{-1}(x^{2}+x))$$ is

  • Question 7
    1 / -0

    If $$f(x)=\cos^{-1}\left(\dfrac {\sqrt {2x^{2}+1}}{x^{2}+1}\right)$$, then range of $$f(x)$$ is

  • Question 8
    1 / -0

    $$cos^{-1}\left(\dfrac{\pi}{3}+sec^{-1}(-2)\right)$$=

  • Question 9
    1 / -0

    The value of $$\cot\left(cosec^{-1}\dfrac{5}{3}+\tan^{-1}\dfrac{2}{3}\right)$$ is equal to-

  • Question 10
    1 / -0

    $$\int _{ 0 }^{ \pi  }{ \left[ cotx \right] dx,where\left[ \cdot  \right]  } $$ denotes the greatest integer function, is equal to:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now