Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    $${ sec\quad h }^{ -1 }\left( sin\quad \theta  \right) =$$

  • Question 2
    1 / -0

    $$\cos^{ -1 }\left[\cos\left( -\frac { 17 }{ 15 } \pi  \right)  \right] $$ is equal to 

  • Question 3
    1 / -0

    Find $$\displaystyle \int x.\sin xdx$$

  • Question 4
    1 / -0

    If $$A=\tan^{1-}\left(\dfrac {x\sqrt {3}}{2k-x}\right)$$ and $$B=\tan^{-1}\left(\dfrac {2x-k}{k\sqrt {3}}\right)$$ then $$A.B=$$

  • Question 5
    1 / -0

    If $$\cos^{-1}x-\cos^{-1}(\dfrac {y}{2})=\alpha$$ $$ax^{2}-4xy\cos \alpha +y^{2}=$$

  • Question 6
    1 / -0

    if x$$>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right)$$

  • Question 7
    1 / -0

    $$\cos ^{ -1 }{ \left\{ \dfrac { 1 }{ 2 } { x }^{ 2 }+\sqrt { 1-{ x }^{ 2 } } \sqrt { 1-\dfrac { { x }^{ 2 } }{ 4 }  }  \right\} =\cos ^{ -1 }{ \dfrac { x }{ 2 } -\cos ^{ -1 }{ x }  }  }$$ holds for:

  • Question 8
    1 / -0

    $$if\quad x>0\quad then\quad { tanh }^{ -1 }\left( \frac { { x }^{ 2 }-1 }{ { x }^{ 2 }+1 }  \right) $$

  • Question 9
    1 / -0

    If $$\cot^{-1}{x}+\tan^{-1}\left (\dfrac{1}{3}\right)=\dfrac{\pi}{2}$$, then $$x$$ will be

  • Question 10
    1 / -0

    If $$x={ \sin }^{ -1 }(\sin10) $$ and $$y={ \cos }^{ -1 }(\cos10)$$, then find $$y - x$$.

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now