Self Studies

Inverse Trigonometric Functions Test - 43

Result Self Studies

Inverse Trigonometric Functions Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\frac{\cos ^{-1}(41 / 49)}{\sin ^{-1}(2 / 7)}=$$
    Solution
    $$\textbf{Step-1: Rewrite the Numerator observing Denominator}$$
                     $$\textbf{& apply multiple - angles of trigonometric function.}$$

                     $$\text{We have,}$$

                     $$\dfrac{\cos ^{-1}(41 / 49)}{\sin ^{-1}(2 / 7)}\\$$   $$\text{.....(i)}$$

                     $$\text{Now,}\\$$
                     $$\cos^{-1} (1- 2 (\dfrac{2}{7})^2)$$

                     $$\text{Put}$$ $$\sin \theta = \dfrac{2}{7}$$ 

                     $$\therefore$$  $$\cos^{-1}(1- 2 \sin^2 \theta)$$

                     $$\cos^{-1} (\cos 2\theta)$$            $$\boldsymbol{[\cos 2 \theta = 1 - 2 \sin^{2} \theta]}$$

                     $$ = 2\theta$$

    $$\textbf{Step-2: Use the above results & get the required unknown.}$$

                     $$\dfrac{\cos ^{-1}(41 / 49)}{\sin ^{-1}(2 / 7)}\\$$ $$= \dfrac{2 \theta}{\theta} = 2$$                     $$[\textbf{using (i)}]$$

    $$\textbf{Hence, option - C is the answer}$$

  • Question 2
    1 / -0
    The value of $$tan(\frac { 1 }{ 2 } { cos }^{ -1 }(\frac { \sqrt { 5 }  }{ 3 } ))$$ is
    Solution
    Given,

    $$y=\tan \left [ \dfrac{1}{2}\cos ^{-1}\left ( \dfrac{\sqrt{5}}{3} \right ) \right ]$$

    Let, $$x=\cos ^{-1}\left ( \dfrac{\sqrt{5}}{3} \right )$$

    $$\Rightarrow \cos x=\dfrac{\sqrt{5}}{3} $$

    $$\therefore y=\tan \dfrac{1}{2}x$$

    $$y=\tan \dfrac{x}{2}$$

    $$y=\sqrt{\dfrac{1-\cos x}{1+\cos x}}$$

    $$=\sqrt{\dfrac{1-\frac{\sqrt{5}}{3}}{1+\frac{\sqrt{5}}{3}}}$$

    $$=\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}$$

    rationalizing the factor, we get,

    $$y=\dfrac{3-\sqrt{5}}{2}$$
  • Question 3
    1 / -0
    If tan (x + y) = 33 and x = $${ tan }^{ -1 }3$$, then y will be
    Solution
    Given,

    $$\tan (x+y)=33$$

    $$x=\tan ^{-1}3$$

    $$\Rightarrow \tan x=3$$

    Formula,

    $$\tan (x+y)=\dfrac{\tan x+\tan y}{1-\tan x\tan y}$$

    $$33=\dfrac{3+\tan y}{1-(3)\tan y}$$

    $$33(1-3\tan y)=3+\tan y$$

    $$33-99\tan y=3+\tan y$$

    $$30=100\tan y$$

    $$\tan y=\dfrac{30}{100}=0.3$$

    $$\therefore y=\tan ^{-1}0.3$$
  • Question 4
    1 / -0
    $$\tan { ^{ -1 }\left( 3/5 \right)  } +\tan { ^{ -1 }\left( 1/4 \right)  } =$$
    Solution
    given, $${\tan}^{-1}{\dfrac{3}{5}}+{\tan}^{-1}{\dfrac{1}{4}}$$

    $$={\tan}^{-1}{\left(\dfrac{\frac{3}{5}+\frac{1}{4}}{1-\frac{3}{5}\times\frac{1}{4}}\right)}$$

    $$={\tan}^{-1}{\left(\dfrac{\frac{12+5}{20}}{1-\frac{3}{20}}\right)}$$

    $$={\tan}^{-1}{\left(\dfrac{\frac{17}{20}}{\frac{20-3}{20}}\right)}$$

    $$={\tan}^{-1}{\left(\dfrac{\frac{17}{20}}{\frac{17}{20}}\right)}$$

    $$={\tan}^{-1}{\left(1\right)}$$

    $$=\dfrac{\pi}{4}$$
  • Question 5
    1 / -0
    If $$sin^{-1}(\dfrac{1}{3}) + sin^{-1}(\dfrac{2}{3}) = sin^{-1} x$$, then x is equal to
    Solution
    $$\sin^{-1}\dfrac{1}{3}+\sin^{-1}\dfrac{2}{3}\\\sin ^{-1}\left\{\dfrac{1}{3}\sqrt{1-\left(\dfrac{2}{3}\right)^2}+\dfrac{2}{3}\sqrt{1-\left(\dfrac{1}{3}\right)^2}\right\}\\\sin^{-1}\left\{\dfrac{1}{3}\left(\dfrac{\sqrt5}{3}\right)+\dfrac{2}{3}\left(\dfrac{\sqrt8}{3}\right)\right\}\\\sin^{-1}\left\{\dfrac{\sqrt5+4\sqrt2}{9}\right\}\\x=\dfrac{\sqrt5+4\sqrt2}{9}$$
  • Question 6
    1 / -0
    The value of $$\sin ^{-1}(\sin 5\frac {\pi}{3})=$$
    Solution
    Given,

    $$\sin ^{-1}\left (\sin 5\dfrac{\pi }{3}  \right )$$

    Let $$\theta =\sin ^{-1}\left (\sin 5\dfrac{\pi }{3}  \right )$$

    $$\sin \theta =\left (\sin 5\dfrac{\pi }{3}  \right )=\sin \left ( 2\pi - \dfrac{\pi }{3}\right )$$

    $$\Rightarrow \sin \theta =-\sin  \dfrac{\pi }{3}$$

    $$\therefore \theta =-\dfrac{\pi }{3}$$
  • Question 7
    1 / -0
    The value of $$\displaystyle sec\left [ sin^{-1}\left (sin \dfrac{50\pi }{9} \right ) + cos^{-1}cos\left ( \dfrac{31\pi }{9} \right ) \right ]$$ is equal to
    Solution
    Given,

    $$\sec \left [ \sin ^{-1}\left ( \sin \dfrac {50\pi }{9} \right ) +\cos ^{-1}\left ( \cos \dfrac {31\pi }{9} \right ) \right ]$$

    $$=\sec \left [ \dfrac {50\pi }{9} + \dfrac {31\pi }{9}\right ]$$

    $$=\sec \dfrac {81\pi }{9}$$

    $$=\sec 9\pi$$
  • Question 8
    1 / -0
    $${ \cos   }^{ -1 }\left[ \cos  \left( 2{ \cot   }^{ -1 }\left( \sqrt { 2 } -1 \right)  \right)  \right]$$ is equal to
    Solution

  • Question 9
    1 / -0
    The value of $$\sin^{-1}(\cos (\log_{2}(4\alpha -44)))$$ is
  • Question 10
    1 / -0
    The number of solutions of the equation $$3\cos^{-1}x-\pi x-\dfrac {\pi}{2}=0$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now