Self Studies

Inverse Trigonometric Functions Test - 45

Result Self Studies

Inverse Trigonometric Functions Test - 45
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\sin \left\{\dfrac {\pi}{3}-\sin^{-1}\left (\dfrac {-1}{2}\right) \right\}=$$ ?
    Solution

  • Question 2
    1 / -0
    Evaluate : $$\tan \dfrac {1}{2}\left (\cos^{-1}\dfrac {\sqrt 5}{3}\right)$$ 
    Solution

  • Question 3
    1 / -0
    Evaluate : $$\cot (\tan^{-1}x+\cot^{-1}x)$$ 
    Solution

  • Question 4
    1 / -0
    If $$x\neq 0$$ then $$\cos (\tan^{-1}x+\cot^{-1}x)=$$?
    Solution

  • Question 5
    1 / -0
    $$\cos \left(\tan^{-1} \dfrac {3}{4}\right)=$$?
    Solution
    Let $$\tan^{-1}\dfrac {3}{4}=x$$, where $$x\in \left(\dfrac {-\pi}{2}, \dfrac {\pi}{2}\right)$$.

    $$\therefore \ \tan x =\dfrac {3}{4}$$ and since $$x \in \left(\dfrac {-\pi}{2}, \dfrac {\pi}{2}\right)$$, where have $$\cos x > 0$$

    $$\therefore \ \cos x =\dfrac {1}{\sec x}=\dfrac {1}{\sqrt {1+\tan^2 x}}=\dfrac {1}{\sqrt {1+\dfrac {9}{16}}}=\dfrac {4}{5}$$

    $$\therefore \ \cos \left (\tan^{-1}\dfrac {3}{4}\right)=\cos x =\dfrac {4}{5}$$. 
  • Question 6
    1 / -0
    The value of $$\sin \left(\cos^{-1}\dfrac {3}{5}\right)$$ is
    Solution

  • Question 7
    1 / -0
    Evaluate : $$\cos \left(2\tan^{-1}\dfrac {1}{2}\right)$$ 
    Solution

  • Question 8
    1 / -0
    $$\sin \left [2\tan^{-1}\dfrac {5}{8}\right]$$
    Solution

  • Question 9
    1 / -0
    $$\sin \left [2\sin^{-1}\dfrac{4}{5}\right]$$
    Solution

  • Question 10
    1 / -0
    $$\tan \left\{\cos^{-1}\dfrac {4}{5}+\tan^{-1}\dfrac {2}{3}\right\}=$$ ?
    Solution
    $$\cos ^{ -1 }{ x } =\tan ^{ -1 }{ \dfrac { \sqrt { 1-{ x }^{ 2 } }  }{ x }  } \Rightarrow \cos ^{ -1 }{ \dfrac { 4 }{ 5 }  } =\tan ^{ -1 }{ \dfrac { \sqrt { 1-\dfrac { 16 }{ 25 }  }  }{ \left( \dfrac { 4 }{ 5 }  \right)  }  } =\tan ^{ -1 }{ \dfrac { 3 }{ 4 }  } $$

    $$ \therefore \cos ^{ -1 }{ \dfrac { 4 }{ 5 }  } +\tan ^{ -1 }{ \dfrac { 2 }{ 3 }  } =\tan ^{ -1 }{ \dfrac { 3 }{ 4 }  } +\tan ^{ -1 }{ \dfrac { 2 }{ 3 }  } =\tan ^{ -1 }{ \left( \dfrac { \dfrac { 3 }{ 4 } +\dfrac { 2 }{ 3 }  }{ 1-\dfrac { 3 }{ 4 } \times \dfrac { 2 }{ 3 }  }  \right)  } =\tan ^{ -1 }{ \dfrac { 17 }{ 6 }  } $$

    $$ \therefore$$ given exp. $$=\tan { \left\{ \tan ^{ -1 }{ \dfrac { 17 }{ 6 }  }  \right\}  } =\dfrac { 17 }{ 6 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now