Self Studies

Inverse Trigonometric Functions Test - 46

Result Self Studies

Inverse Trigonometric Functions Test - 46
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of 
    $$\displaystyle sin^{-1} \left \{ (sin\,\pi/3) \dfrac{x}{\sqrt{x^2 + k^2 - kx}} \right \} - cos^{-1} \left \{ cos\pi /6 \,\dfrac{x}{\sqrt{x^2 + k^2 - kx}} \right \} $$
     $$ \left (where \,\dfrac{k}{2} < x < 2k , \,k > 0 \right ) $$ is 
    Solution

  • Question 2
    1 / -0

    $$cos^{-1}(cos(\dfrac{5\pi}{4}))$$ is given by

    Solution
    $$cos^{-1}\bigg(cos\dfrac{5\pi}{4}\bigg)=cos^{-1}\Bigg(cos\bigg(2\pi-\dfrac{5\pi}{4}\bigg)\Bigg)=cos^{-1}\Bigg(cos\bigg(\dfrac{3\pi}{4}\bigg)\Bigg)=\dfrac{3\pi}{4}$$ 
  • Question 3
    1 / -0
    The value $$2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg]$$ is equal to
    Solution
    $$2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg]$$=$$cos^{-1}\Bigg[\dfrac{1-\bigg(\dfrac{a-b}{a+b}\bigg)\tan^2\dfrac{\theta}{2}}{1+\bigg(\dfrac{a-b}{a+b}\bigg)\tan^2\dfrac{\theta}{2}}\Bigg]$$

    $$2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg]$$=$$cos^{-1}\Bigg[\dfrac{(a+b)-(a-b)\tan^2\dfrac{\theta}{2}}{(a+b)+{a-b}\tan^2\dfrac{\theta}{2}}\Bigg]$$


    $$2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg]$$=$$cos^{-1}\Bigg[\dfrac{a(1-\tan^2\dfrac{\theta}{2})+b(1+\tan^2\dfrac{\theta}{2})}{a(1+\tan^2\dfrac{\theta}{2})+b(1-\tan^2\dfrac{\theta}{2})}\Bigg]$$

    $$2tan^{-1}\Bigg[\sqrt{\dfrac{a-b}{a+b}}\tan\dfrac{\theta}{2}\Bigg]$$=$$cos^{-1}\Bigg[\dfrac{\dfrac{a(1-\tan^2\dfrac{\theta}{2})}{(1+\tan^2\dfrac{\theta}{2})}+b}{a+b\dfrac{(1-\tan^2\dfrac{\theta}{2})}{(1+\tan^2\dfrac{\theta}{2})}}\Bigg]$$

                                                  $$=\cos^{-1}\Bigg[\dfrac{a\cos\theta+b}{b\cos\theta+a}\Bigg]$$
  • Question 4
    1 / -0
    If  f(x)=$$sin^{-1}\Bigg(\dfrac{\sqrt{3}}{2}x-\dfrac{1}{2}\sqrt{1-x^2}\Bigg),-\dfrac{1}{2}\leq x\leq1$$, then f(x) is equal to
    Solution
    Let  $$x=\sin\theta$$  where  $$\dfrac{-1}{2}\leq x\leq1\implies\,\dfrac{-\pi}{6}\leq\theta\leq\dfrac{\pi}{2}$$

    Then $$f(x)=sin^{-1}\Bigg(\dfrac{\sqrt{3}}{2}x-\dfrac{1}{2}\sqrt{1-x^2}\Bigg)$$

                      $$=sin^{-1}\Bigg(\dfrac{\sqrt{3}}{2}\sin\theta-\dfrac{1}{2}\cos\theta\Bigg)$$

                      $$=sin^{-1}\Bigg(\sin\bigg(\theta-\dfrac{\pi}{6}\bigg)\Bigg)$$

                      $$=\theta-\dfrac{\pi}{6}=sin^{-1}x-\dfrac{\pi}{6}$$
  • Question 5
    1 / -0
    If $$sin^{-1}\dfrac{5}{x}+sin^{-1}\dfrac{12}{x}=\dfrac{\pi}{2}$$, then x is equal to
    Solution
    Put  $$sin^{-1}\dfrac{5}{x}=A\implies \dfrac{5}{x}=\sin A$$

     $$\sin^{-1}\dfrac{12}{x}=B\implies \dfrac{12}{x}=\sin B \implies A+B=\dfrac{\pi}{2}$$

    $$\implies\sin A=\sin(\dfrac{\pi}{2}-B)=\cos B=\sqrt{1-sin^{2}B}$$

    $$\implies\dfrac{5}{x}=\sqrt{1-\dfrac{144}{x^2}}\implies \dfrac{169}{x^2}=1$$

    $$\implies x^2=169 \implies x=13$$            [$$x = -13$$ does not satisfy the given equation] 
  • Question 6
    1 / -0
    If  $$3\sin^{-1}\bigg(\dfrac{2x}{1+x^2}\bigg)-4\cos^{-1}\bigg(\dfrac{1-x^2}{1+x^2}\bigg)+2tan^{-1}\bigg(\dfrac{2x}{1-x^2}\bigg)=\dfrac{\pi}{3}$$, where $$|x|<1$$. then x is equal to
    Solution
    Put $$x=\tan\theta$$
    $$\therefore\,3\sin^{-1}\bigg(\dfrac{2\tan\theta}{1+\tan^2\theta}\bigg)-4\cos^{-1}\bigg(\dfrac{1-\tan^2\theta}{1+\tan^2\theta}\bigg)+2\tan^{-1}\bigg(\dfrac{2\,\tan\theta}{1-\tan^2\theta}\bigg)=\dfrac{\pi}{3}$$ 

    $$\implies\,3\sin^{-1}(\sin2\theta)-4\cos^{-1}(\cos2\theta)+2\tan^{-1}(\tan2\theta)=\dfrac{\pi}{3}$$ 
    $$\implies\,3(2\theta)-4(2\theta)+2(2\theta)=\dfrac{\pi}{3}\,\implies2\theta=\dfrac{\pi}{3}\implies\theta=\dfrac{\pi}{6}\implies\,x=\tan \dfrac{\pi}{6}=\dfrac{1}{\sqrt{3}}$$ 
  • Question 7
    1 / -0
    If $$x\in\bigg(\dfrac{-\pi}{2},\dfrac{\pi}{2}\bigg)$$, then the value $$\tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{3\sin 2x}{5+3\cos 2x}\Bigg)$$  is
    Solution
    $$\tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{3\sin 2x}{5+3\cos 2x}\Bigg)$$=$$\tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)$$+$$\tan^{-1}\Bigg(\dfrac{\dfrac{6\tan x}{1+tan^{2}x}}{5+3\dfrac{1-tan^{2}x}{1+tan^{2}x}}\Bigg)$$ 

                                                                               $$=\tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{6\tan x}{8+2\tan^2x}\Bigg)$$

                                                                               $$=\tan^{-1}\Bigg(\dfrac{\tan x}{4}\Bigg)+\tan^{-1}\Bigg(\dfrac{3\tan x}{4+\tan^2x}\Bigg)$$

                                                                               $$=\tan^{-1}\Bigg(\dfrac{\dfrac{\tan x}{4}+\dfrac{3\tan x}{4+\tan^2x}}{1-\dfrac{3\tan^2x}{4(4+\tan^2x)}}\Bigg)$$

                                                                               $$=\tan^{-1}\Bigg(\dfrac{16\tan x+tan^{3}x}{16+tan^2x}\Bigg)$$

                                                                               $$=\tan^{-1}(\tan x)=x$$
  • Question 8
    1 / -0

    The value of $$sin^{-1}\Bigg(cot\bigg(sin^{-1}\sqrt{\dfrac{2-\sqrt{3}}{4}}+cos^{-1}\dfrac{\sqrt{12}}{4}+\sec^{-1}\sqrt{2}\bigg)\Bigg)$$ is

    Solution
    We have  $$sin^{-1}\Bigg(cot\bigg(sin^{-1}\sqrt{\dfrac{2-\sqrt{3}}{4}}+cos^{-1}\dfrac{\sqrt{12}}{4}+\sec^{-1}\sqrt{2}\bigg)\Bigg)$$

    = $$\sin^{-1}\Bigg(\cot\bigg(sin^{-1}\bigg(\dfrac{\sqrt{3}-1}{2\sqrt{2}}\bigg)+cos^{-1}\dfrac{\sqrt{3}}{2}+\cos^{-1}\dfrac{1}{\sqrt{2}}\bigg)\Bigg)$$

    = $$\sin^{-1}[\cot(15^{\circ}+30^{\circ}+45^{\circ})]$$

    = $$\sin^{-1}[\cot(90^{\circ})]$$

    = $$\sin^{-1}(0)=0$$
  • Question 9
    1 / -0
    If $$\tan^{-1}\dfrac{1-x}{1+x}=\dfrac{1}{2}\tan^{-1}x$$, then x is equal to
    Solution
    We have $$\tan^{-1}\dfrac{1-x}{1+x}=\dfrac{1}{2}\tan^{-1}x$$

    $$\implies\,\tan^{-1}\Bigg[\dfrac{1-\tan\theta}{1+\tan\theta}\Bigg]=\dfrac{1}{2}\theta$$

    $$\implies\,\tan^{-1}\Bigg[\dfrac{\tan\dfrac{\pi}{4}-\tan\theta}{1+\tan\dfrac{\pi}{4}\tan\theta}\Bigg]=\dfrac{1}{2}\theta$$

    $$\implies\,\tan^{-1}\tan\bigg(\dfrac{\pi}{4}-\theta\bigg)=\dfrac{\theta}{2}$$

    $$\implies\dfrac{\pi}{4}-\theta=\dfrac{\theta}{2}$$

    $$\implies\theta=\dfrac{\pi}{6}=\tan^{-1}x$$

    $$\implies x=tan\dfrac{\pi}{6}=\dfrac{1}{\sqrt{3}}$$

  • Question 10
    1 / -0
    If  $$tan^{-1}x+2 cot^{-1}x=\dfrac{2\pi}{3}$$, then x is equal to 
    Solution
    $$\tan^{-1}x+2 \cot^{-1}x=\dfrac{2\pi}{3}$$
    $$\implies tan^{-1}x=2\bigg(\dfrac{\pi}{3}-\cot^{-1}x\bigg)=2\bigg(\dfrac{\pi}{3}-(\dfrac{\pi}{2}-\tan^{-1}x)\bigg)=2\bigg(-\dfrac{\pi}{6}+\tan^{-1}x\bigg)$$
    $$\implies\tan^{-1}x=\dfrac{\pi}{3} \implies x=\tan\dfrac{\pi}{3}=\sqrt{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now