Self Studies

Inverse Trigonometric Functions Test - 47

Result Self Studies

Inverse Trigonometric Functions Test - 47
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$\tan^{1}x + \tan^{1}y + \tan^{1}z = \dfrac {\pi}{2}$$, then 
    Solution
    $$Given\,\,that \tan^{1}x + \tan^{1}y + \tan^{1}z = \dfrac {\pi}{2}$$
    $$\implies \tan^{-1}\Bigg[\dfrac{x+y+z-xyz}{1-xy-yz-zx}\Bigg]=\dfrac{\pi}{2}$$
    For this denominator of$$\Bigg[\dfrac{x+y+z-xyz}{1-xy-yz-zx}\Bigg]$$ must be zero.
    hence $$xy+yz+zx-1=0$$
  • Question 2
    1 / -0
    If  $$3\tan^{-1}(\dfrac{1}{2+\sqrt{3}})-\tan^{-1}\dfrac{1}{x}=\dfrac{1}{3}$$, then x is equal to
    Solution
    The given equation can be written as
     $$3\tan^{-1}(\dfrac{1}{2+\sqrt{3}})=\dfrac{1}{3}+\tan^{-1}\dfrac{1}{x}$$
    $$\implies 3(15^{\circ})=\tan^{-1}\dfrac{\dfrac{1}{x}+\dfrac{1}{3}}{1-\dfrac{1}{x}\dfrac{1}{3}}\,\implies1=\dfrac{3+x}{3x-1}\implies x=2$$
  • Question 3
    1 / -0
    If  $$cot^{-1}(\sqrt{\cos a})- tan^{-1}(\sqrt{\cos a})=x$$, then $$\sin x$$ is  
    Solution
    $$cot^{-1}(\sqrt{\cos a})- tan^{-1}(\sqrt{\cos a})=x$$

    $$tan^{-1}(\dfrac{1}{\sqrt{\cos a}})- tan^{-1}(\sqrt{\cos a})=x$$

    $$tan^{-1}\dfrac{\dfrac{1}{\sqrt{\cos a}}-\sqrt{\cos a}}{1+\dfrac{1}{\sqrt{\cos a}}\sqrt{\cos a}}=x$$

    $$tan^{-1}\dfrac{1-\cos a}{2\sqrt{\cos a}}=x$$

    $$\dfrac{1-\cos a}{2\sqrt{\cos a}}=\tan x$$

    $$\dfrac{2\sqrt{\cos a}}{1-\cos a}=\cot x$$

    $$\sin x=\dfrac{1-\cos a}{1+\cos a}=\dfrac{2\sin^2\dfrac{\alpha}{2}}{2\cos^2\dfrac{\alpha}{2}}$$=$$tan^2\dfrac{\alpha}{2}$$
  • Question 4
    1 / -0
    The value of $$\underset{|x|\rightarrow\infty}{lim}cos(tan^{-1}(sin(tan^{-1}x)))$$  is equal to
    Solution
    $$\underset{|x|\rightarrow\infty}{lim}cos(tan^{-1}(sin(tan^{-1}x)))=cos(tan^{-1}(sin(tan^{-1}\infty)))$$
    $$=cos(tan^{-1}(sin(\dfrac{\pi}{2}))$$
    $$=cos(tan^{-1}(1))$$
    $$=cos(\dfrac{\pi}{4})=\dfrac{1}{\sqrt{2}}$$
  • Question 5
    1 / -0
    The domain of the function $$\cos ^{-1}(2x-1)$$ is
    Solution
    we have, $$f(x)=\cos ^{-1}(2x-1)$$
    $$\because -1 \le 2x -1 \le1$$
    $$\Rightarrow 0 \le 2x \le 2$$
    $$\Rightarrow 0 \le x \le 1$$
    $$\therefore x \in [0,1]$$
  • Question 6
    1 / -0
    If $$\cos \left(\sin ^{-1}\dfrac{2}{5} + \cos ^{-1} x\right)=0$$ then $$x$$ is equal to
    Solution
    we have $$\cos \left(\sin ^{-1}\dfrac{2}{5} + \cos ^{-1} x\right)=0$$
    $$\Rightarrow \sin ^{-1}\dfrac{2}{5}+ \cos ^{-1}x= \cos^{-1}0$$
    $$\Rightarrow \sin ^{-1}\dfrac{2}{5}+ \cos ^{-1}x= \cos^{-1} \cos \dfrac{\pi}{2}$$
    $$\Rightarrow \sin ^{-1}\dfrac{2}{5}+ \cos ^{-1}x= \dfrac{\pi}{2}$$
    $$\Rightarrow  \cos ^{-1}x= \dfrac{\pi}{2} - \sin ^{-1}\dfrac{2}{5}$$
    $$\Rightarrow  \cos ^{-1}x=\cos ^{-1} \dfrac{2}{5} \ \ [\because \cos^{-1}x+ \sin ^{-1}x=\dfrac{\pi}{2}]$$
    $$\therefore x=\dfrac{2}{5}$$
  • Question 7
    1 / -0
    The value of $$\sin [2 \tan ^{-1} (.75)]$$ is equal to
    Solution
    we have, $$\sin [2 \tan ^{-1} (.75)] = \sin \left(2 \tan ^{-1}\dfrac{3}{4}\right) [0.75=\dfrac{75}{100}=\dfrac{3}{4}$$
    $$=\sin \left(\sin ^{-1}\dfrac{2.\dfrac{3}{4}}{1+\dfrac{9}{16}}\right)=\sin \left[\sin ^{-1} \dfrac{3/2}{25/16}\right]$$
    $$=\sin \left[\sin^{-1} \left(\dfrac{48}{50}\right)\right]=\sin \left[\sin^{-1} \left(\dfrac{48}{50}\right)\right]=\dfrac{24}{25}=0.96$$

  • Question 8
    1 / -0
    The value of $$\cos ^{-1} \left(\cos \dfrac{3 \pi}{2}\right)$$ is equal to
    Solution
    We have, $$\cos ^{-1} \left(\cos \dfrac{3 \pi}{2}\right)$$
    $$=\cos ^{-1}\cos \left( 2 \pi \dfrac{ \pi}{2}\right) \ \ \ \left[\because \cos \left(2 \pi -\dfrac{\pi}{2}\right)\right]= \cos \dfrac{\pi}{2}$$

    $$=\cos ^{-1}\cos \left(  \dfrac{ \pi}{2}\right) =\dfrac{ \pi}{2} \ \ \ \left\{\because \cos^{-1} (\cos x)=x, x \in [0,\pi] \right\}$$
    Note remember that, $$\cos ^{-1} \left(\cos \dfrac{3 \pi}{2}\right) \ne \dfrac{3 \pi}{2}$$
    $$\because \dfrac{3 \pi }{2} \in (0, \pi)$$
  • Question 9
    1 / -0
    If $$\cos ^{-1} \alpha +\cos ^{-1} \beta +\cos ^{-1} \gamma = 3 \pi$$, then $$\alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)$$
    Solution
    we have,$$\cos ^{-1} \alpha +\cos ^{-1} \beta +\cos ^{-1} \gamma = 3 \pi$$
    $$\alpha (\beta + \gamma) + \beta (\gamma + \alpha) + \gamma (\alpha + \beta)$$

    we know that , $$ 0 \le \cos^{-1} x \le \pi$$
    $$\Rightarrow \cos^{-1} \alpha +\cos^{-1} \beta +\cos^{-1} 
    \gamma = 3 \pi$$
    If and only if, $$\cos^{-1}\alpha=\cos^{-1} \beta =\cos^{-1} 
    \gamma =\pi$$
    $$\Rightarrow \cos \pi=\alpha=\beta=\gamma$$
    $$\Rightarrow -1=\alpha=\beta=\gamma$$
    $$\therefore \alpha (\beta + \gamma) + \beta (\gamma + 
    \alpha)+ \gamma (\alpha + \beta)$$
    $$=-1(-1-1)-1(1-1)-1(-1-1)$$$$=2+2+2=6$$
  • Question 10
    1 / -0
    The value of $$\cot \left[cos^{-1}\left(\dfrac{7}{25}\right)\right]$$ is
    Solution
    we have $$\cot \left[cos^{-1}\left(\dfrac{7}{25}\right)\right]$$
    Let $$\cos ^{-1}\dfrac{7}{25}=x$$
    $$\Rightarrow \cos x=\dfrac{7}{25}$$
    $$\therefore \sin x=\sqrt{1-\cos^2x=}\sqrt{1-\left(\dfrac{7}
    {25}\right)^2}$$
    $$=\sqrt{\dfrac{625-49}{625}}=\dfrac{24}{25}$$
    $$\therefore \cot x=\dfrac{\cos x}{\sin x}= \dfrac{\dfrac{7}
    {25}}{\dfrac{24}{25}}=\dfrac{7}{24}$$

    $$\Rightarrow x=\cot^{-1} \left(\dfrac{7}{24} \right)=\cot^{-1} \left(\dfrac{7}{25}\right)$$

    $$\therefore \cot \left(\cos^{-1}\dfrac{7}{25}\right)= \cot 
    \left(\cos^{-1}\dfrac{7}{24}\right)=\dfrac{7}{24} \ \ \left
    [\because \cos^{-1}\dfrac{7}{24}=\cos^{-1}\dfrac{7}
    {25}\right]$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now