Self Studies

Inverse Trigonometric Functions Test - 49

Result Self Studies

Inverse Trigonometric Functions Test - 49
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The domain of the function $$y=\sin^{-1}(-x^2)$$ is 
    Solution
    (C) is the correct answer, 

    Given $$y=\sin^{-1}(-x^2) \Rightarrow \sin y =-x^2$$
    $$\therefore\ -1 \le -x^2 \le 1$$       ( since $$-1 \le \sin y \le 1)$$
    $$\Rightarrow 1 \ge x^2 \ge -1$$
    $$\Rightarrow 0 \le x^2 \le 1$$
    $$\Rightarrow |x| \le 1$$ 
    $$\Rightarrow-1 \le x \le 1$$
    Hence the domain is $$[-1, 1]$$
  • Question 2
    1 / -0
    The value of $$\sin (2\sin^{-1}(0.6))$$ is 
    Solution
    (B) is the correct answer. 

    Let $$\sin^{-1}(0.6) =\theta \Rightarrow\sin \theta =0.6$$.
    $$\therefore\ \sin (2\sin^{-1}(0.6))\\=\sin ( 2\theta )\\=2\sin \theta \cos \theta \\=2 \sin\theta\sqrt{1-\sin^2\theta}\\=2(0.6)(\sqrt{1-{0.6}^2})\\=2(0.6)(0.8)=0.96$$
  • Question 3
    1 / -0
    The value of $$\tan^2 ( \sec^{-1}2)+\cot^2 (\csc^{-1}3)$$ is 
    Solution
    (B) is the correct answer.

    We have 
    $$\tan^2 ( \sec^{-1}2) \cot^2 ( \csc^{-1}3) $$
    $$=\sec^2 (\sec^{-1}2)-1+\csc^2 (\csc^{-1}3)-1\qquad[\because \tan^2\theta=\sec^2\theta-1,\ \ \ \cot^2\theta=\csc^2\theta-1]$$
    $$=(2)^2-1+(3)^2-1=11$$
  • Question 4
    1 / -0
    $$\sin^{-1} (1 -x) - 2 \sin ^{-1} x = \dfrac{\pi }{2} , $$ then x
    Solution
    $$\sin^{-1} (1 -x) - 2 \sin ^{-1} x = \dfrac{\pi }{2} $$ 
    $$ -2\sin ^{-1} x = \dfrac{\pi }{2} - \sin^{-1} (1 -x)$$
    $$-2 \sin ^{-1} x = \cos^{-1} (1 -x)$$
    $$\cos ( -2 \sin^{-1} x) = 1 -x$$
    $$\cos ( 2 \sin^{-1} x) = 1 -x$$
    $$\cos (2 sin ^{-1} x) = 1 -x $$
    $$ 1 - 2 \sin^{2} (sin^{-1} x) = 1 - x $$
    $$1 - 2x^{2} = 1- x\Rightarrow $$
    $$2x^{2} -x  = 0 \\x(2x -1) = 0\\ \Rightarrow  x = 0 , x = \dfrac{1}{2}$$
    $$\dfrac{1}{2}$$ does not satisfy the equation $$\therefore  x = 0$$ is the only solution 
  • Question 5
    1 / -0
    Choose the correct answer : 
    $$ \sin \left ( \dfrac{\pi }{3} - \sin^{-1}\left ( -\dfrac{1}{2} \right ) \right ) $$ is equal to
    Solution
    $$ \sin \left [ \left ( \dfrac{\pi}{3} - \sin^{-1} \left ( \dfrac{-1}{2} \right ) \right ) \right ]  $$
    $$ \left [ \sin \left [ \left ( \dfrac{\pi}{3} - \sin^{-1} \left ( \dfrac{-1}{2} \right ) \right ) \right ]  \right ] $$
    $$ \sin \left ( \dfrac{\pi }{3} + \sin^{-1}\left ( \sin \dfrac{\pi }{6} \right ) \right ) $$
    $$\left (  as \sin^{-1} \left ( \dfrac{-1}{2} \right ) = \sin^{-1}\dfrac{1}{2} and \sin \dfrac{\pi }{6} = \dfrac{1}{2} \right ) $$

    $$ = \sin \left ( \dfrac{\pi }{3} + \dfrac{\pi }{6} \right ) $$

    $$ = \sin\dfrac{\pi }{2} = 1 $$
  • Question 6
    1 / -0
    Choose the correct answer 
    $$ \cos ^{-1} ( \cos \dfrac{7\pi }{6}) $$ is equal to
    Solution
    $$ \cos^{-1} \cos\left ( \dfrac{7\pi }{6} \right )$$
    $$ \cos^{-1} \left ( \cos\left ( \pi  + \dfrac{\pi }{6} \right ) \right ) = \cos^{-1} \left ( - \cos\dfrac{\pi}{6} \right ) $$ 
    $$ =\pi- \cos^{-1} \left ( \cos\dfrac{\pi }{6} \right ) $$
    $$=\pi-\dfrac{\pi}{6}$$
    $$ = \dfrac{5\pi }{6} $$
  • Question 7
    1 / -0
    If  $$ \sin ^{-1} x = y $$ , then
    Solution
    pv of $$ \sin^{-1} x$$ is $$\left [ \dfrac{-\pi }{2},\dfrac{\pi }{2} \right ] $$
    $$\therefore  (B) - \dfrac{\pi}{2} \leq  y  \leq \dfrac{\pi }{2} $$ is correct
  • Question 8
    1 / -0
    $$ \tan^{-1} \sqrt{3} - \sec^{-1} (-2) $$ is equal to
    Solution
    $$ \tan^{-1} \sqrt{3} = \dfrac{\pi }{3} \epsilon \left [ \dfrac{-\pi }{2} ,\dfrac{\pi }{2} \right ]$$
    $$ \sec^{-1} (-2) = \pi  - \dfrac{\pi }{3} = \dfrac{2 \pi}{3} \epsilon  [0, \pi] $$
    $$\therefore  \tan^{-1} \sqrt{3} -  sec^{-1} (-2) = \dfrac{\pi}{3} - \dfrac{2 \pi}{3} $$
    $$ = -\dfrac{\pi}{3} $$
    $$ \therefore  $$ Option (B) is correct .
  • Question 9
    1 / -0
    Multiple choice Questions :
    $$ 2\sin \left ( \cos^{-1}\left ( \dfrac{-4}{5} \right ) \right )\times \cos \cos^{-1} \left ( \dfrac{-4}{5} \right )$$
    Solution
    $$ 2\sin \left ( \cos^{-1}\left ( \dfrac{-4}{5} \right ) \right )\times \cos \cos^{-1} \left ( \dfrac{-4}{5} \right )$$
    $$ = 2 \sqrt{1-\left ( \dfrac{-4}{5} \right )^{2}} \times\left ( \dfrac{-4}{5} \right )$$
    $$= -\dfrac{8}{5} \sqrt{\dfrac{9}{25}} = \dfrac{-8}{5} \times\dfrac{3}{5} = \dfrac{-24}{25}$$
  • Question 10
    1 / -0
    Multiple choice Questions :
    The value of $$ \tan^{-1} (\tan 5)$$
    Solution
    Let $$ 2\pi - 5 = \theta $$
    $$ \Rightarrow  5 = 2 \pi - \theta $$
    $$ \tan 5 =  \tan ( 2 \pi - \theta )$$
    $$ \tan^{-1} (\tan 5) = \tan^{-1} \tan ( 2 \pi - \theta)$$
    $$ = \tan^{-1}[-\tan \theta]=-\theta$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now