Self Studies

Inverse Trigonometric Functions Test - 50

Result Self Studies

Inverse Trigonometric Functions Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Multiple choice Questions :
    If a > b > c ,
    $$ \cot^{-1} \left ( \dfrac{1 + ab}{a - b} \right ) + \cot^{-1}\left ( \dfrac{1 + bc}{b - c} \right ) + \cot^{-1} \left ( \dfrac{1 + ac}{c - a} \right ) $$
    Solution
    $$ \tan ^{-1}\left ( \dfrac{a - b}{1 + ab} \right ) + \tan^{-1} \left ( \dfrac{b - c}{1 + bc} \right ) + \tan^{-1} \left ( \dfrac{c - a}{1 + ac} \right ) $$
    $$ = \tan^{-1} a - \tan^{-1} b + \tan^{-1} b - \tan^{-1} c +  \pi - \tan^{-1} a + \tan^{-1} c $$
    $$ = \pi \ \ \ \ \ \ \ \ as \tan^{-1} \left ( \dfrac{c - a}{1 + ac} \right ) = \pi - \tan^{-1} \left ( \dfrac{a - c}{1 + ac} \right )$$
  • Question 2
    1 / -0
    Multiple choice Questions :
    $$ \sin^{-1}\left ( \dfrac{4}{5} \right ) + \cos^{-1}\left ( \dfrac{4}{5} \right )=$$
    Solution
    $$ \sin ^{1} x + \cos^{-1} x= \dfrac{\pi}{2} $$
    $$ \sin^{-1}\left ( \dfrac{4}{5} \right ) + \cos^{-1}\left ( \dfrac{4}{5} \right )= \dfrac{\pi}{2} $$
  • Question 3
    1 / -0
    Multiple choice Questions :
    $$ \cos^{-1} \cos \left ( \dfrac{4 \pi}{3} \right ) = $$ 
    Solution
    $$ \cos^{-1} \cos \left ( \dfrac{4 \pi}{3} \right ) = \cos^{1}\cos \left (  \pi + \dfrac{\pi}{3} \right ) $$
    $$ = \cos^{-1} \left [  - cos \dfrac{\pi}{3} \right ] $$
    $$ = \pi - cos^{-1} \left (  \cos\dfrac{\pi}{3} \right ) = \pi - \dfrac{\pi}{3} =   \dfrac{2\pi}{3}$$
  • Question 4
    1 / -0
    $$\tan ^{-1}\left ( \dfrac{x}{y} \right ) - \tan^{-1} \dfrac{x - y}{x + y}$$ is equal to
    Solution
    $$\tan^{-1} \left ( \dfrac{x}{y} \right ) - \left ( \tan^{-1}\dfrac{\frac{x}{y}-1}{1+\dfrac{x}{y}} \right )$$
    $$=\tan^{-1} \left ( \dfrac{x}{y} \right )-\tan ^{-1} \left ( \dfrac{x}{y} \right )+ \tan^{-1} (1)$$
    $$\tan^{-1} 1 = \dfrac{\pi }{4}$$
  • Question 5
    1 / -0
    $$2\tan(\tan^{-1}x+\tan^{-1}x^3)$$ is:

    Solution
    $$2\tan (\tan^{-1}x+\tan^{-1}x^{3})$$
    $$=2\tan \left\{\tan^{-1}\left(\dfrac{x+x^{3}}{1-x\times x^{3}}\right)\right\}$$
    $$=2\tan \left\{\tan^{-1}\left(\dfrac{x(1+x^{2})}{1-x^{4}}\right)\right\}$$
    $$=2\tan \left\{\tan^{-1}\dfrac{x(1+x^{2})}{(1-x^{2})(1+x^{2})}\right\}$$
    $$=2\tan \dfrac{x}{1-x^{2}}=\dfrac{2x}{1-x^{2}}$$
    Hence, option $$(a)$$ is correct.
  • Question 6
    1 / -0
    If $$\sin^{-1}\left(\dfrac{1}{2}\right)=x$$, then general value $x$$ is:
    Solution
    Given,
    $$\sin^{-1}\left(\dfrac{1}{2}\right)=x$$
    $$\Rightarrow \sin x=\dfrac{1}{2}=\sin \dfrac{\pi}{6}$$
    $$\Rightarrow x=\dfrac{\pi}{6}$$
    $$\therefore$$ General value of $$x, \theta=n\pi +(-1)^{n}\dfrac{\pi}{6}$$
    Hence, option $$(d)$$ is correct.
  • Question 7
    1 / -0
    If $$\tan^{-1}(3x)+\tan^{-1} 2x=\dfrac{\pi}{4}$$, then $$x$$ is:
    Solution
    $$\tan^{-1}(3x)+\tan^{-1}(2x)=\dfrac{\pi}{4}$$
    $$\Rightarrow \tan^{-1}\left\{\dfrac{3x+2x}{1-3x\times 2x}\right\}=\dfrac{\pi}{4}$$
    $$\Rightarrow \left(\dfrac{5x}{1-6x^{2}}\right)=\tan \dfrac{\pi}{4}$$
    $$\Rightarrow \dfrac{5x}{1-6x^{2}}=1$$
    $$\Rightarrow 1-6x^{2}=5x$$
    $$\Rightarrow 6x^{2}+5x-1=0$$
    $$\Rightarrow 6x^{2}+6x-x-1=0$$
    $$\Rightarrow 6x(x+1)-1(x+1)=0$$
    $$\Rightarrow (x+1)(6x-1)=0$$
    $$\Rightarrow x=-1, x=\dfrac{1}{6}$$
    Hence, option $$(a)$$ is correct.
  • Question 8
    1 / -0
    If $$\tan^{-1}(1)+\cos^{-1}(\dfrac{1}{\sqrt{2}})=\sin^{-1}x$$, then value of $$x$$ is
    Solution
    $$\tan^{-1}(1)+\cos^{-1}\left(\dfrac{1}{\sqrt{2}}\right)=\sin^{-1}x$$
    $$\Rightarrow \sin^{-1}x=\dfrac{\pi}{4}+\dfrac{\pi}{4}$$
    $$\Rightarrow \sin^{-1}x=\dfrac{\pi}{2}$$
    $$\Rightarrow x=\sin \dfrac{\pi}{2}$$
    $$\Rightarrow x=1$$
    Hence, option $$(c)$$ is correct.
  • Question 9
    1 / -0
    Value of $$\sin^{-1}(\dfrac{\sqrt{3}}{2})+2\cos^{-1}(\dfrac{\sqrt{3}}{2})$$ is:

    Solution
    $$\sin^{-1}\left(\dfrac{\sqrt{3}}{2}\right)+2\cos^{-1}\left(\dfrac{\sqrt{3}}{2}\right)$$
    $$=\left[\sin^{-1}\left(\dfrac{\sqrt{3}}{2}\right)+\cos^{-1}\left(\dfrac{\sqrt{3}}{2}\right)\right]+\cos^{-1}\left(\dfrac{\sqrt{3}}{2}\right)$$
    $$=\dfrac{\pi}{2}+\dfrac{\pi}{6}=\dfrac{2\pi}{3}\left[\because \sin^{-1}x+\cos^{-1}x=\dfrac{\pi}{2}\right]$$
    Hence, option $$(c)$$ is correct.
  • Question 10
    1 / -0
    If $$\cot^{-1}x+\tan^{-1}\dfrac{1}{3}=\dfrac{\pi}{2}$$ then $$x$$ is:
    Solution
    $$\cot^{-1}(x)+\tan^{-1}\left(\dfrac{1}{3}\right)=\dfrac{\pi}{2}$$
    $$\Rightarrow \cot^{-1}x=\dfrac{\pi}{2}-\tan^{-1}\left(\dfrac{1}{3}\right)$$
    $$\Rightarrow \cot^{-1}x=\cot^{-1}\dfrac{1}{3}$$
    On comparing $$x=\dfrac{1}{3}$$
    Hence, option $$(c)$$ is correct.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now