Let,
$$t=2{{\tan }^{-1}}\left[ \sqrt{\dfrac{a-b}{a+b}}\tan \dfrac{\theta
}{2} \right]$$ ……. (1)
Let,
$$b=a\cos \alpha $$ ……. (2)
Then,
$$ \dfrac{a-b}{a+b}=\dfrac{a-a\cos \alpha }{a+a\cos \alpha }
$$
$$ \dfrac{a-b}{a+b}=\dfrac{1-\cos \alpha }{1+\cos \alpha } $$
$$ \dfrac{a-b}{a+b}=\dfrac{1-\left( 1-2{{\sin }^{2}}\dfrac{\alpha
}{2} \right)}{1+2{{\cos }^{2}}\dfrac{\alpha }{2}} $$
$$ \dfrac{a-b}{a+b}=\dfrac{2{{\sin }^{2}}\dfrac{\alpha
}{2}}{2{{\cos }^{2}}\dfrac{\alpha }{2}} $$
$$ \dfrac{a-b}{a+b}={{\tan }^{2}}\dfrac{\alpha }{2} $$
$$\sqrt{\dfrac{a-b}{a+b}}=\tan \dfrac{\alpha }{2}$$ …… (3)
From equation (1) and (3), we get
$$ \tan \dfrac{t}{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\theta
}{2} $$
$$ \Rightarrow \cos t=\dfrac{1-{{\tan }^{2}}\dfrac{t}{2}}{1+{{\tan
}^{2}}\dfrac{t}{2}} $$
$$ \cos t=\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}{{\tan
}^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}{{\tan }^{2}}\dfrac{\theta
}{2}} $$
$$ \cos t=\dfrac{1-\dfrac{{{\sin }^{2}}\dfrac{\alpha
}{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}}\dfrac{{{\sin }^{2}}\dfrac{\theta
}{2}}{{{\cos }^{2}}\dfrac{\theta }{2}}}{1+\dfrac{{{\sin }^{2}}\dfrac{\alpha
}{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}}\dfrac{{{\sin }^{2}}\dfrac{\theta
}{2}}{{{\cos }^{2}}\dfrac{\theta }{2}}} $$
$$ \cos t=\dfrac{{{\cos }^{2}}\dfrac{\alpha }{2}{{\cos
}^{2}}\dfrac{\theta }{2}-{{\sin }^{2}}\dfrac{\alpha }{2}{{\sin }^{2}}\dfrac{\theta
}{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}{{\cos }^{2}}\dfrac{\theta }{2}-{{\sin
}^{2}}\dfrac{\alpha }{2}{{\sin }^{2}}\dfrac{\theta }{2}} $$
$$ \cos t=\dfrac{\dfrac{1}{2}\left[ \cos \theta +\cos
\alpha \right]}{\dfrac{1}{2}\left[
1+\cos \alpha \cos \theta \right]} $$
From equation (2), we get
$$ \cos t=\dfrac{\cos \theta +\dfrac{b}{a}}{1+\cos \theta \dfrac{b}{a}}=\dfrac{a\cos
\theta +b}{a+b\cos x} $$
$$ \Rightarrow t={{\cos }^{-1}}\left[ \dfrac{a\cos \theta
+b}{a+b\cos \theta } \right] $$
Hence, this is the required
result.