Self Studies

Inverse Trigonometric Functions Test - 55

Result Self Studies

Inverse Trigonometric Functions Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$\displaystyle f:A\rightarrow B$$ be a function defined by $$\displaystyle y=f(x)$$ where f is a bijective function, means f is injective (one-one) as well as surjective (onto), then there exist a unique mapping $$\displaystyle g:B\rightarrow A$$ such that $$\displaystyle f(x)=y$$ if and only if $$\displaystyle g(y)=x\forall x \epsilon A,y \epsilon B $$ Then function g is said to be inverse of f and vice versa so we write $$\displaystyle g=f^{-1}:B\rightarrow A[\left \{ f(x),x \right \}:\left \{ x,f(x) \right \}\epsilon f^{-1}] $$when branch of an inverse function is not given (define) then we consider its principal value branch.

    If $$\displaystyle -1<x<0$$,then $$\displaystyle \tan^{-1}x $$ equals?
    Solution
    Let $$\displaystyle \tan^{-1} x=\alpha $$
    $$\Rightarrow \dfrac{-\pi}{4}<\alpha<0$$
    $$\displaystyle \therefore \tan\alpha=x $$ such that $$\displaystyle \frac{-\pi}{4}<\alpha <0 $$
    $$\displaystyle \therefore \sin\alpha=\frac{x}{\sqrt{1+x^{2}}}\Rightarrow \alpha=\sin^{-1}\left(\frac{x}{\sqrt{1+x^{2}}} \right)$$
    $$\displaystyle =\cot^{-1}\left( \frac{1}{x}\right)$$ 
    $$\displaystyle=\sec^{-1}\sqrt{1+x^{2}}$$
    $$\displaystyle =\ cosec^{-1} \frac{\sqrt{1+x^{2}}}{x}$$ 
    $$\displaystyle \alpha=\tan^{-1}x=\sin^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$$

  • Question 2
    1 / -0
    Match the entries of Column - I and Column - II.
    Column - IColumn - II
    aIf 4 $$sin^{-1} x + cos^{-1} x = \pi$$, then x equals1ab
    bIf $$\angle C = 90^{0}$$, then the value of $$tan^{-1}$$ $$\dfrac{a}{b + c}$$ + $$tan^{-1}$$ $$\dfrac{b}{c +a}$$ is 2$$\pi$$
    c$$tan^{-1}$$ 1 + $$tan^{-1}$$ 2 + $$tan^{-1}$$ 3 is3$$\pi$$/4
    dIf $$sec^{-1}$$ $$\dfrac{x}{a}$$ - $$sec^{-1}$$ $$\dfrac{x}{b}$$ = $$sec^{-1}$$ b - $$sec^{-1}$$ a, then x equals41/2
    Solution
    (a) $$\rightarrow$$ (4).
    4 $$sin^{-1}$$ x + $$\left (\dfrac{\pi}{2} - sin^{-1} x   \right )$$ = x
    $$\therefore$$  3$$sin^{-1}$$ x = $$\dfrac{\pi}{2}$$ or x = $$sin\dfrac{\pi}{6} = \dfrac{1}{2}$$
    (b) $$\rightarrow$$ (3).
    Use Rule 5 and $$a^{2}$$ + $$b^{2}$$ = $$c^{2}$$, $$tan^{-1}$$ 1 = $$\pi/4$$
    (c) $$\rightarrow$$ (2).
    $$tan^{-1}$$ 2 + $$tan^{-1}$$ 3 = $$\pi$$ + $$tan^{-1}$$ $$\dfrac{2 + 3}{1 - 2.3}$$
    = $$\pi$$ - $$tan^{-1}$$ 1
    $$\therefore$$ L.H.S = $$tan^{-1}$$ 1 +$$tan^{-1}$$ 2 + $$tan^{-1}$$ 3 = $$\pi$$
    (d) $$\rightarrow$$ (1)
  • Question 3
    1 / -0
    The value of $$sin^{-1} x + cos^{-1} x (|x| \geq 1)$$ is
    Solution

    $$\sin^{-1}x+\cos^{-1}x$$

    $$\sin^{-1}x=\theta_{1}\,\,\Rightarrow \sin\theta_{1}=x$$

    $$\cos^{-1}x=\theta_{2}\,\,\Rightarrow \cos\theta_{2}=x$$

    $$\tan\theta_{1}=\cfrac{x}{\sqrt{1-x^{2}}}$$

    $$\tan\theta_{2}=\cfrac{\sqrt{1-x^{2}}}{x}$$

    $$\tan(\theta_{1}+\theta_{2})=\cfrac{\tan\theta_{1}+\tan\theta_{2}}{1-\tan\theta_{1}\tan\theta_{2}}$$

    $$=\cfrac{\cfrac{x}{\sqrt{1-x^{2}}}+\cfrac{\sqrt{1-x^{2}}}{x}}{1-1}$$

    $$=\cfrac{x^{2}+1-x^{2}}{x\sqrt{1-x^{2}}(0)}$$

    $$\tan(\theta_{1}+\theta_{2})=\infty$$

    $$\theta_{1}+\theta_{2}=\cfrac{\pi}{2}$$

    $$\therefore\,\sin^{-1}x+\cos^{-1}x=\cfrac{\pi}{2}$$


  • Question 4
    1 / -0
    Express in terms of an inverse function the angle formed at the intesection of the diagonals of a cube.
  • Question 5
    1 / -0
    The number of solutions of the equation $$sin^{-1} \displaystyle \left ( \frac{1 + x^2}{2x} \right ) = \frac{\pi}{2}  (sec(x - 1))$$ is/are
    Solution

  • Question 6
    1 / -0
    Let $$a, b, c$$ be a positive real numbers $$\theta = \tan^{-1} \sqrt{\dfrac{a(a + b +c)}{bc}} + \tan^{-1} \sqrt{\dfrac{b(a + b+ c)}{ca}} + \tan^{-1} \sqrt{\dfrac{c(a + b + c)}{ab}}$$, then $$\tan \theta$$
    Solution
    $$\theta =\tan^{-1} \sqrt{\dfrac{a\left ( a+b+c \right )}{bc}} +\tan^{-1} \sqrt{\dfrac{b\left ( a+b+c \right )}{ac}} +\tan^{-1} \sqrt{\dfrac{c\left ( a+b+c \right )}{ab}}$$

    $$\alpha =\tan^{-1} \sqrt{\dfrac{a\left ( a+b+c \right )}{bc}} $$

    $$\beta = \tan^{-1} \sqrt{\dfrac{b\left ( a+b+c \right )}{ac}}$$

    $$\gamma = \tan^{-1} \sqrt{\dfrac{c\left ( a+b+c \right )}{ab}}$$

    $$\Rightarrow \tan \alpha = \sqrt{\dfrac{a\left ( a+b+c \right )}{bc}} $$

    $$\Rightarrow \tan \beta = \sqrt{\dfrac{b\left ( a+b+c \right )}{ac}}$$

    $$\Rightarrow \tan \gamma = \sqrt{\dfrac{c\left ( a+b+c \right )}{ab}}$$

    $$\tan \alpha+\tan \beta+\tan \gamma =\sqrt{\dfrac{a\left ( a+b+c \right )}{bc}}+\sqrt{\dfrac{b\left ( a+b+c \right )}{ac}}+\sqrt{\dfrac{c\left ( a+b+c \right )}{ab}}$$

    $$=\dfrac{\left ( a+b+c \right )^{\frac{3}{2}}}{\sqrt{abc}}$$

    $$=\tan \alpha\tan \beta\tan \gamma $$

    $$\Rightarrow \tan \theta =\left [ \dfrac{(\tan \alpha+\tan \beta+\tan \gamma)-\tan \alpha\tan \beta\tan \gamma}{1-\tan \alpha\tan \beta-\tan \beta\tan \gamma-\tan \gamma\tan \alpha} \right ]$$

    $$\Rightarrow \tan \theta =0$$
  • Question 7
    1 / -0
    Let $$a={ (\sin ^{ -1 }{ x) }  }^{ \sin ^{ -1 }{ x }  },\quad b={ \left( \sin ^{ -1 }{ x }  \right)  }^{ \cos ^{ -1 }{ x }  },\quad c={ \left( \cos ^{ -1 }{ x }  \right)  }^{ \sin ^{ -1 }{ x }  },\quad d={ \left( \cos ^{ -1 }{ x }  \right)  }^{ \cos ^{ -1 }{ x }  }$$ and if $$x\in (0,1)$$then 
    Solution

  • Question 8
    1 / -0
    $$2{\tan ^{ - 1}}\left[ {\sqrt {\dfrac{{a - b}}{{a + b}}} \tan \dfrac{\theta }{2}} \right] = $$
    Solution

    Let,

    $$t=2{{\tan }^{-1}}\left[ \sqrt{\dfrac{a-b}{a+b}}\tan \dfrac{\theta }{2} \right]$$     ……. (1)

     

    Let,

    $$b=a\cos \alpha $$      ……. (2)

     

    Then,

    $$ \dfrac{a-b}{a+b}=\dfrac{a-a\cos \alpha }{a+a\cos \alpha } $$

    $$ \dfrac{a-b}{a+b}=\dfrac{1-\cos \alpha }{1+\cos \alpha } $$

    $$ \dfrac{a-b}{a+b}=\dfrac{1-\left( 1-2{{\sin }^{2}}\dfrac{\alpha }{2} \right)}{1+2{{\cos }^{2}}\dfrac{\alpha }{2}} $$

    $$ \dfrac{a-b}{a+b}=\dfrac{2{{\sin }^{2}}\dfrac{\alpha }{2}}{2{{\cos }^{2}}\dfrac{\alpha }{2}} $$

    $$ \dfrac{a-b}{a+b}={{\tan }^{2}}\dfrac{\alpha }{2} $$

    $$\sqrt{\dfrac{a-b}{a+b}}=\tan \dfrac{\alpha }{2}$$      …… (3)

     

    From equation (1) and (3), we get

    $$ \tan \dfrac{t}{2}=\tan \dfrac{\alpha }{2}\tan \dfrac{\theta }{2} $$

    $$ \Rightarrow \cos t=\dfrac{1-{{\tan }^{2}}\dfrac{t}{2}}{1+{{\tan }^{2}}\dfrac{t}{2}} $$

    $$ \cos t=\dfrac{1-{{\tan }^{2}}\dfrac{\alpha }{2}{{\tan }^{2}}\dfrac{\theta }{2}}{1+{{\tan }^{2}}\dfrac{\alpha }{2}{{\tan }^{2}}\dfrac{\theta }{2}} $$

    $$ \cos t=\dfrac{1-\dfrac{{{\sin }^{2}}\dfrac{\alpha }{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}}\dfrac{{{\sin }^{2}}\dfrac{\theta }{2}}{{{\cos }^{2}}\dfrac{\theta }{2}}}{1+\dfrac{{{\sin }^{2}}\dfrac{\alpha }{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}}\dfrac{{{\sin }^{2}}\dfrac{\theta }{2}}{{{\cos }^{2}}\dfrac{\theta }{2}}} $$

    $$ \cos t=\dfrac{{{\cos }^{2}}\dfrac{\alpha }{2}{{\cos }^{2}}\dfrac{\theta }{2}-{{\sin }^{2}}\dfrac{\alpha }{2}{{\sin }^{2}}\dfrac{\theta }{2}}{{{\cos }^{2}}\dfrac{\alpha }{2}{{\cos }^{2}}\dfrac{\theta }{2}-{{\sin }^{2}}\dfrac{\alpha }{2}{{\sin }^{2}}\dfrac{\theta }{2}} $$

    $$ \cos t=\dfrac{\dfrac{1}{2}\left[ \cos \theta +\cos \alpha  \right]}{\dfrac{1}{2}\left[ 1+\cos \alpha \cos \theta  \right]} $$

     

    From equation (2), we get

    $$ \cos t=\dfrac{\cos \theta +\dfrac{b}{a}}{1+\cos \theta \dfrac{b}{a}}=\dfrac{a\cos \theta +b}{a+b\cos x} $$

    $$ \Rightarrow t={{\cos }^{-1}}\left[ \dfrac{a\cos \theta +b}{a+b\cos \theta } \right] $$

     

    Hence, this is the required result.
  • Question 9
    1 / -0
    If $$\cos ^{ -1 }{ \cfrac { x }{ 2 }  } +\cos ^{ -1 }{ \cfrac { y }{ 3 }  } =\theta $$, then $$9{x}^{2}-12xy\cos{\theta}+4{y}^{2}$$ is equal to
    Solution

  • Question 10
    1 / -0
    $$\sin^{-1} \sin{15}+\cos^{-1} \cos{20}+\tan^{-1}\tan{25}=$$ ?
    Solution
    $${ sin }^{ -1 }sin15+{ cos }^{ -1 }cos20+{ tan }^{ -1 }tan25$$
    $$= (0.26179938) + (0.3490685) + (0.43633231)$$
    $$= 1.04719754.$$

                                                                             


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now