Self Studies

Inverse Trigonometric Functions Test - 57

Result Self Studies

Inverse Trigonometric Functions Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    $$Sin h (cos h ^{-1} x) =$$
    Solution

  • Question 2
    1 / -0
    The value of $$e^{sinh^{-1} (tan \theta)}$$ is equal to
    Solution

  • Question 3
    1 / -0
    $$\tanh^{1}\left(\dfrac {1}{3}\right)+\coth^{1}(3)=$$..... 
    Solution

  • Question 4
    1 / -0
    For which value of x, $$\sin [\cot^{-1}(x+1)]=\cos (\tan^{-1}x)$$.
    Solution

  • Question 5
    1 / -0
    If $$cot^{-1} x - cot^{-1} (x+2) = 15^0$$ then x is equal to 
  • Question 6
    1 / -0
    If $$y=\dfrac{1}{2}\csc\ h^{-1}{\left(\dfrac{1}{2x\sqrt{1+x^{2}}}\right)}$$ then $$x$$=
    Solution

  • Question 7
    1 / -0
    Solve : $$sin h^{-1} (\dfrac{x}{\sqrt{1-x^2}}) =$$
    Solution

  • Question 8
    1 / -0
    The value of $$\tan^{-1}\left[\dfrac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right],\left|x\right|<\dfrac{1}{2},x=0$$, is equal to:
    Solution

  • Question 9
    1 / -0
    The value of $$\tan{\left\{\dfrac{\pi}{4}+\dfrac{1}{2}\cos^{-1}{(\dfrac{x}{y})}\right\}}+\tan{\left\{\dfrac{\pi}{4}-\dfrac{1}{2}\cos^{-1}{(\dfrac{x}{y})}\right\}}$$
    Solution

  • Question 10
    1 / -0
    If $$f(x)={ sin }^{ -1 }\left( \frac { \sqrt { 3 }  }{ 2 } x-\frac { 1 }{ 2 } \sqrt { 1-{ x }^{ 2 } }  \right) -\frac { 1 }{ 2 } \le x\le 1$$, then f(x) is equal to :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now