Self Studies

Inverse Trigonometric Functions Test - 61

Result Self Studies

Inverse Trigonometric Functions Test - 61
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\theta ={ cot }^{ -1 }\sqrt { cosx } -{ tan }^{ -1 }\sqrt { cosx } $$, then $$sin\theta =$$
    Solution

  • Question 2
    1 / -0
    The smallest and largest value of $$\tan^{-1}\left(\dfrac {1-x}{1+x}\right),0 \le x \le 1$$ are
    Solution

  • Question 3
    1 / -0
    $$ \sin ^{-1}\left(\dfrac{1}{\sqrt{2}}\right)+\sin ^{-1}\left(\dfrac{\sqrt{2}-1}{\sqrt{6}}\right)+\ldots+\sin ^{-1}\left(\dfrac{\sqrt{n}-\sqrt{n-1}}{\sqrt{n(n+1)}}\right)+\ldots . \infty= $$
    Solution

  • Question 4
    1 / -0
    If  $$\cot  \dfrac { 2{ x } }{ 3 } +\tan  \dfrac { { x } }{ 3 } =\csc  \dfrac { { kx } }{ 3 } ,$$  then the value of  $$\tan ^{ { -1 } } (\tan { k } )$$  equals
    Solution

  • Question 5
    1 / -0
    The value of the expression tan$$(\frac{1}{2} cos ^{-1}\frac{2}{\sqrt{5}})$$ is
    Solution

  • Question 6
    1 / -0
    $$4\tan ^{ -1 }{ \frac { 1 }{ 5 }  } -\tan ^{ -1 }{ \frac { 1 }{ 70 }  } +\tan ^{ -1 }{ \frac { 1 }{ 99 }  } =$$
  • Question 7
    1 / -0
    Considering only the principal values of inverse functions, the set $$A=\left\{ x\quad \ge \quad 0\quad :tan^{ -1 }(2x)+tan^{ -1 }(3x)=\dfrac { \pi  }{ 4 }  \right\} $$
  • Question 8
    1 / -0
    The value of $$\sin ^{ -1 }{ (\cos { (\cos ^{ -1 }{ (\cos { x } ) } +\sin ^{ -1 }{ (\sin { x } ) } ) } ) } ,\quad where\quad x\in (\frac { \pi  }{ 2 } ,\pi )$$, is equal to 
    Solution

  • Question 9
    1 / -0
    The value of $$\sin^{-1}(\sin 12)-\cos^{-1}(\cos 12)=$$
    Solution
    $${\sin}^{-1}{\left(\sin{12}\right)}-{\cos}^{-1}{\left(\cos{12}\right)}$$
    $$={\cos}^{-1}{\sqrt{1-{\sin}^{2}{12}}}-{\cos}^{-1}{\left(\cos{12}\right)}$$ since $${\sin}^{-1}{x}={\cos}^{-1}{\sqrt{1-{x}^{2}}}$$
    $$={\cos}^{-1}{\left(\cos{12}\right)}-{\cos}^{-1}{\left(\cos{12}\right)}=0$$
  • Question 10
    1 / -0
    $$\tan ^{ -1 }{ (\frac { 5 }{ 12 } ) } +\sin ^{ -1 }{ (\frac { 24 }{ 25 } ) } =\cos ^{ -1 }{ (x) } \Rightarrow x=$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now