Self Studies

Inverse Trigono...

TIME LEFT -
  • Question 1
    1 / -0

    the number o real soluttion of tan1x(x+1)+sin1x2+x+1=π 2is{ tan }^{ -1 }\sqrt { x(x+1) } +{ sin }^{ -1 }\sqrt { { x }^{ 2 }+x+1 } =\frac { \pi  }{ 2 } is

  • Question 2
    1 / -0

    The numerical value of cot(2sin135+cos135 )cot\left( { 2sin }^{ -1 }\dfrac { 3 }{ 5 } +{ cos }^{ -1 }\dfrac { 3 }{ 5 }  \right) is

  • Question 3
    1 / -0

    If sin1(x 2 )+sin1(1x4  )+tan1y=2π 3{ sin }^{ -1 }\left( \dfrac { \sqrt { x }  }{ 2 }  \right) +{ sin }^{ -1 }\left( \sqrt { 1-\dfrac { x }{ 4 }  }  \right) +tan^{ -1 }y=\dfrac { 2\pi  }{ 3 } then

  • Question 4
    1 / -0

    cos1[2cot1(21) ]{ cos }^{ -1 }\left[ 2cot^{ -1 }\left( \surd 2-1 \right)  \right] is equal to

  • Question 5
    1 / -0

    If cot1(cosa)tan1(cosa)=x,{ \cot }^{ -1 }(\sqrt { \cos a } )-{ \tan }^{ -1 }(\sqrt { \cos a } )=x, then sinx\sin x is equal to

  • Question 6
    1 / -0

    tan1(1+x2+1+x2 1+x21x2  ),[x]12 ,isequalto{ tan }^{ -1 }\left( \dfrac { \sqrt { 1+{ x }^{ 2 } } +\sqrt { 1+{ -x }^{ 2 } }  }{ \sqrt { 1+{ x }^{ 2 } } -\sqrt { 1{ -x }^{ 2 } }  }  \right) ,[x]\le \dfrac { 1 }{ \sqrt { 2 }  } ,is\quad equal\quad to

  • Question 7
    1 / -0

    If If x2+y2+z2=r2,x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = r ^ { 2 } , then tan1(xyzr)+tan1(yzxr)+tan1(xzyr)tan^ { - 1 } \left( \frac { x y } { z r } \right) + \tan ^ { - 1 } \left( \frac { y z } { x r } \right) + \tan ^ { - 1 } \left( \frac { x z } { y r } \right) =

  • Question 8
    1 / -0

    If cos1xcos1y2=αcos^{-1}x - cos^{-1}\dfrac{y}{2} = \alpha , then 4x24xycosα+y24x^2 - 4xy\, cos\, \alpha + y^2 is equal to -

  • Question 9
    1 / -0

    If  cos1(x/a)+cos1(y/b)=α,\cos ^ { - 1 } ( x / a ) + \cos ^ { - 1 } ( y / b ) = \alpha ,  Then  x2/a2+y2/b2x ^ { 2 } / a ^ { 2 } + y ^ { 2 } / b ^ { 2 }  is equal to:

  • Question 10
    1 / -0

    If sin1x+sin1y=2π3sin^{-1}x+sin^{-1}y=\cfrac {2 \pi}3, then cos^{-1}x+cos^{-1}y$$ equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now