Self Studies
Selfstudy
Selfstudy

Matrices Test - 16

Result Self Studies

Matrices Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If A and B are matrices of same order, then (AB′ – BA′) is a

    Solution

    We have matrices A and B of same order.

    Let P=(AB' - BA')

    Then, P' = (AB' - BA')' = (AB')' - (BA')'

    = (B')'(A)' - (A')'B' = BA' - AB'

    = -(AB' - BA') = - P

    Hence, (AB' - BA') is a skew-symmetric matrix.

  • Question 2
    1 / -0

    If A is a square matrix such that \(A^2\) = I, then \((A–I)^3\)\((A + I)^3\) –7A is equal to

    Solution

    We have, \(A^2 = I\)

    \(\therefore\) \((A - I)^3 + (A + I)^3 - 7A\)

    = [(A - I) + (A + I){\((A - I)^2 + (A + I)^2 \) - (A - I)(A + I)}] - 7A

    \([\because a^3 + b^3 = (a + b)(a^2 + b^2 - ab)]\)

    \([(2A)\) {\(A^2 + I^2 - 2AI + A^2 + I^2 +2 AI -(A^2 - I^2)\)}] - 7A

    = 2A[ I + \(I^2 + I + I^2 - A^2 + I^2] - 7A [\because A^2 = AI]\)

    = 2A[5I - I] - 7A

    = 8AI - 7AI [\(\because\) A = AI]

    = AI = A

  • Question 3
    1 / -0

    For any two matrices A and B, we have

    Solution

    For any two matrices A and B, we may have AB = BA = I, AB \(\neq\) BA and AB = 0 but it is not always true.

  • Question 4
    1 / -0

    On using elementary column operations \(C_2 \rightarrow C_2 – 2C_1\) in the following matrix equation

    \(\begin{bmatrix} 1 &-3 \\[0.3em] 2 &4 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 &-1 \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 3 & 1 \\[0.3em] 2 &4 \\[0.3em] \end{bmatrix}\), we have :

    Solution

    Given that, \(\begin{bmatrix} 1 &-3 \\[0.3em] 2 &4 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 &-1 \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} 3 & 1 \\[0.3em] 2 &4 \\[0.3em] \end{bmatrix}\)

    On using \(C_2 \rightarrow C_2 - 2C_1\)\(\begin{bmatrix} 1 &-5 \\[0.3em] 2 &0 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 &-1 \\[0.3em] 0 &1 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 3 &-5 \\[0.3em] 2 &0 \\[0.3em] \end{bmatrix}\)

    Since, on using elementary column operation on X = AB, we apply these operations simultaneously on X and on the second matrix B of the product AB on RHS.

  • Question 5
    1 / -0

    On using elementary row operation \(R_1 \rightarrow R_1 – 3R_2\) in the following matrix equation:

    \(\begin{bmatrix} 4 & 2 \\[0.3em] 3 & 3\\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 & 2 \\[0.3em] 0 & 3\\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} 2 & 0 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\), we have :

    Solution

    We have, \(\begin{bmatrix} 4 & 2 \\[0.3em] 3 & 3 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 & 2 \\[0.3em] 0 & 3 \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} 2 & 0 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\)

    Using elementary row operation \(R_1 \) → \(R_1 - 3R_2\),

    \(\begin{bmatrix} -5 & -7 \\[0.3em] 3 & 3 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 & -7 \\[0.3em] 0 & 3 \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} 2 & 0 \\[0.3em] 1 & 1 \\[0.3em] \end{bmatrix}\)

    Since, on using elementary row operation on X = AB, we apply these operation simultaneously on X and on the first matrix A of the product AB on RHS.

  • Question 6
    1 / -0

    If A = \(\begin{bmatrix} 1 &0 & 0 \\[0.3em] 0 & 1 & 0 \\[0.3em] a &b &-1 \end{bmatrix}\), then \(A^2\) = 

    Solution

    \(A^2 = A.A = \) \(\begin{bmatrix} 1 &0 & 0 \\[0.3em] 0 & 1 & 0 \\[0.3em] a &b &-1 \end{bmatrix}\) \(\begin{bmatrix} 1 &0 & 0 \\[0.3em] 0 & 1 & 0 \\[0.3em] a &b &-1 \end{bmatrix}\)

    \(\begin{bmatrix} 1 &0 & 0 \\[0.3em] 0 & 1 & 0 \\[0.3em] 0 &0 & 1 \end{bmatrix}\) = I

  • Question 7
    1 / -0

    If A = \(\begin{bmatrix} 2& 2 \\[0.3em] a & b \\[0.3em] \end{bmatrix}\) and \(A^2 = O\), then (a, b) = 

    Solution

    \(A^2\) = \(\begin{bmatrix} 2& 2 \\[0.3em] a & b \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} 2& 2 \\[0.3em] a & b \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 4 + 2a & 4 + 2b \\[0.3em] 2a + ab & 2a + b^2 \\[0.3em] \end{bmatrix}\) = 0

    \(\begin{bmatrix} 0& 0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix}\)

    ⇒ 4 + 2a = 0, 4 + 2b = 0, 2a + ab = 0, 2a + \(b^2 \) = 0 must be consistent.

    ⇒ a = -2, b = -2

  • Question 8
    1 / -0

    If A = \(\begin{bmatrix} i & 0 \\[0.3em] 0 &i\\[0.3em] \end{bmatrix}\), then \(A^2\) = 

    Solution

    A = \(\begin{bmatrix} i & 0 \\[0.3em] 0 & i \\[0.3em] \end{bmatrix}\)\(A^2 = A.A = \)  \(\begin{bmatrix} i & 0 \\[0.3em] 0 & i \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} i & 0 \\[0.3em] 0 & i \\[0.3em] \end{bmatrix}\)

    \(A^2\) = \(\begin{bmatrix} -1 & 0 \\[0.3em] 0 & -1 \\[0.3em] \end{bmatrix}\) \([\because i^2 = -1]\)

  • Question 9
    1 / -0

    If A = \(\begin{bmatrix} x & 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\) and \(A^2\) is the identity matrix, then x =

    Solution

    A = \(\begin{bmatrix} x & 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\)\(\therefore \) \(A^2 = I\) 

    ⇒ \(\begin{bmatrix} x & 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\) \(\begin{bmatrix} x & 1 \\[0.3em] 1 & 0 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 & 0 \\[0.3em] 0 & 1 \\[0.3em] \end{bmatrix}\)

    ⇒ \(\begin{bmatrix} x^2 + 1 & x \\[0.3em] x & 1 \\[0.3em] \end{bmatrix}\) = \(\begin{bmatrix} 1 & 0 \\[0.3em] 0 & 1 \\[0.3em] \end{bmatrix}\)

    ⇒ \(x^2 + 1 = 1\) 

    ⇒ x = 0

  • Question 10
    1 / -0

    Which one of the following is not true

    Solution

    It is a property of matrix multiplication.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now