Self Studies
Selfstudy
Selfstudy

Matrices Test - 17

Result Self Studies

Matrices Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A=\left[ \begin{matrix} 3 & 1 \\ -1 & 2 \end{matrix} \right] $$ and $$\displaystyle I=\left[ \begin{matrix} 1 & 0 \\ 0 & 1 \end{matrix} \right] $$, then the correct statement is:
    Solution
    Now, $$\displaystyle { A }^{ 2 }=\left[ \begin{matrix} 3 & 1 \\ -1 & 2 \end{matrix} \right] \left[ \begin{matrix} 3 & 1 \\ -1 & 2 \end{matrix} \right] $$
    $$\displaystyle =\left[ \begin{matrix} 8 & 5 \\ -5 & 3 \end{matrix} \right] $$
    $$\displaystyle \therefore \quad { A }^{ 2 }-5A+7I=\left[ \begin{matrix} 8 & 5 \\ -5 & 3 \end{matrix} \right] -\left[ \begin{matrix} 15 & 5 \\ -5 & 10 \end{matrix} \right] +\left[ \begin{matrix} 7 & 0 \\ 0 & 7 \end{matrix} \right] $$ 
    $$\displaystyle =\left[ \begin{matrix} 0 & 0 \\ 0 & 0 \end{matrix} \right] $$
  • Question 2
    1 / -0
    If AB = AC then 
    Solution
    Value of B and C depends on the value of A. if A is non-singular, i.e non zero, then B=C. 
    But if A=0, then both terms AB and AC becomes zero, so B and C need not be necessarily equal.
  • Question 3
    1 / -0
    If $$\mathrm{A}^{2}=\mathrm{A},\ \mathrm{B}^{2}=\mathrm{B},\ \mathrm{A}\mathrm{B}=\mathrm{B}\mathrm{A}=O$$ (Null Matrix), then $$(\mathrm{A}+\mathrm{B})^{2}=$$
    Solution
    $$(A + B)^{2} = A^{2} + B^{2} + AB + BA$$
    $$= A + B$$
  • Question 4
    1 / -0
    $$I$$ $$A=\left[\begin{array}{ll}
    0 & 1\\ 1 & 0 \end{array}\right]$$,  $$A^{4}=$$
    ($$I$$ is an identity matrix.)
    Solution
    Given, $$IA=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
    $$\Rightarrow A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

    Now, $$A^{2}=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

    $$\Rightarrow A^{2}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
    $$\Rightarrow A^{2}=I$$
    $$\Rightarrow A^{4}=I$$

  • Question 5
    1 / -0
    lf $$\mathrm{A}= \left[\begin{array}{lll}
    o & c & -b\\
    -c & o & a\\
    b & -a & o
    \end{array}\right]\mathrm{a}\mathrm{n}\mathrm{d}$$ $$ \mathrm{B}=\left[\begin{array}{lll}
    a^{2} & ab & ac\\
    ab & b^{2} & bc\\
    ac & bc & c^{2}
    \end{array}\right],$$ then $$\mathrm{A}\mathrm{B}=$$
    Solution

    Multiplying the two matrices we get,

    $$\begin{bmatrix} 0+abc-abc & 0+c{ b }^{ 2 }-c{ b }^{ 2 } & 0+b{ c }^{ 2 }-b{ c }^{ 2 } \\ -{ a }^{ 2 }c+0+{ a }^{ 2 }c & -abc+0+abc & -a{ c }^{ 2 }+0+a{ c }^{ 2 } \\ { a }^{ 2 }b-{ a }^{ 2 }b+0 & a{ b }^{ 2 }-a{ b }^{ 2 }+0 & abc-abc+0 \end{bmatrix}$$

    $$=\begin{bmatrix} 0&0&0 \\ 0&0&0 \\ 0&0&0\end{bmatrix} $$

    $$= O$$

    Hence the answer is option D
  • Question 6
    1 / -0
    lIf $$\mathrm{A} =\left[\begin{array}{ll}
    a & 0\\
    a & 0
    \end{array}\right],\ \mathrm{B}=\left[\begin{array}{ll}
    0 & 0\\
    b & b
    \end{array}\right],$$ then $$\mathrm{A}\mathrm{B}=$$ 
    Solution
    $$\displaystyle AB = \begin{bmatrix} a&0\\a&0 \end{bmatrix} \begin{bmatrix} 0&0\\b&b \end{bmatrix}$$
    $$=\begin{bmatrix} a\times 0+0\times b&a\times 0+0\times b\\a\times 0+0\times b&a\times 0+0\times b \end{bmatrix} $$
    $$ =\begin{bmatrix} 0&0\\0&0 \end{bmatrix} = O$$
  • Question 7
    1 / -0
    If $$A=\left[\begin{array}{lll}
    1 & -2 & 3\\
    -4 & 2 & 5
    \end{array}\right]$$ and $$B=\left[\begin{array}{ll}
    2 & 3\\
    4 & 5\\
    2 & 1
    \end{array}\right],$$ then 
    Solution
    Since, we have $$A = 2 \times 3 , \: B = 3 \times 2$$
    So, both $$AB$$ and $$BA$$ exist.
    But both are not equal to each other because bith are if different order 
    $$\because AB \rightarrow 2 \times 2$$ and $$BA \rightarrow 3 \times 3.$$
  • Question 8
    1 / -0
    $$A=\left[\begin{array}{lll} 0 & 1 & -2\\1 & 0 & 3\\2 &-3 & 0 \end{array}\right]$$ then $$\mathrm{A}+\mathrm{A}^{\mathrm{T}}=$$
    Solution
    Given, $$A=\begin{bmatrix}
    0 & 1 & -2\\
    1 &  0& 3\\
    2 & -3 & 0
    \end{bmatrix}$$
    So, By property of transpose (1),
    $$A^{T}=\begin{bmatrix}
    0 & 1 & 2\\
    1 & 0 & -3\\
    -2 & 3 & 0
    \end{bmatrix}$$
    So, By operation of matrixes (2),
    $$A+A^{T}=\begin{bmatrix}
    0 & 2 & 0\\
    2 & 0 & 0\\
    0 & 0 & 0
    \end{bmatrix}$$
  • Question 9
    1 / -0
    $$\left[\begin{array}{ll}
    x & 0\\
    0 & y
    \end{array}\right]\left[\begin{array}{ll}
    a & b\\
    c & d
    \end{array}\right]=$$
    Solution
     The value of$$ \begin{bmatrix} x&0\\0&y \end{bmatrix} \begin{bmatrix} a&b\\c&d \end{bmatrix}$$
    $$=\begin{bmatrix} x\times a+0\times c&x\times b+0\times d\\ 0\times a+y\times c&0\times b+y\times d \end{bmatrix} $$
    $$ =\begin{bmatrix} ax&bx\\cy&dy \end{bmatrix} $$
  • Question 10
    1 / -0
    If $$\mathrm{A}=\left[\begin{array}{lll}
    1 & -3 & -4\\
    -1 & 3 & 4\\
    1 & -3 & -4
    \end{array}\right]$$, then $$\mathrm{A}^{2}=$$
    Solution
    $$A^2=A.A$$
    $$=\begin{bmatrix}
    1 & -3 &-4 \\
    -1 & 3 & 4\\
    1 & -3 & -4
    \end{bmatrix}\begin{bmatrix}
    1 & -3 & -4\\
    -1 & 3 & 4\\
    1 & -3 & -4
    \end{bmatrix}$$
    $$=\begin{bmatrix}
    0 & 0 & 0\\
    0 & 0 & 0\\
    0 & 0 & 0
    \end{bmatrix}$$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now