Self Studies

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A=[x,y],  B=\left[\begin{array}{ll}
    a & h\\
    h & b
    \end{array}\right],  C=\left[\begin{array}{l}
    x\\
    y
    \end{array}\right]$$,
    then $$\mathrm{A}\mathrm{B}\mathrm{C}=$$

  • Question 2
    1 / -0

    If $$A=\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} $$, then $$ A^{3}-A^{2}=$$

  • Question 3
    1 / -0

    If the transpose of a matrix is equal to the additive
    inverse, then matrix is called _________
    matrix.

  • Question 4
    1 / -0

    $$[A]_{n\times m}, [B]_{m\times m},$$ are the two matrices. If multiplication AB exist, then

  • Question 5
    1 / -0

    If $$A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$, then $$A^{4}=$$

  • Question 6
    1 / -0

    If $$I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix},$$ then find $$I^3$$

  • Question 7
    1 / -0

    If $$A= \begin{bmatrix}
    1 & 2 & 3\\
    4 & 5 & 6
    \end{bmatrix}$$ and $$B= \begin{bmatrix}
    1\\
    0\\

    5\end{bmatrix},$$ then $$AB = $$

  • Question 8
    1 / -0

    If $$A = \begin{bmatrix}a & b\end{bmatrix},\space B = \begin{bmatrix}-b & -a \end{bmatrix}$$ and $$C = \begin{bmatrix}a \\ -a\end{bmatrix}$$, then the correct statement is

  • Question 9
    1 / -0

    If $$\displaystyle A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} 0 & -2 & 4 \\ 1 & 3 & 2 \\ -1 & 1 & 5 \end{bmatrix}$$, then $$A + B$$ is

  • Question 10
    1 / -0

    If $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$ A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix},$$ then find the value of $$a+b+c.$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now