Self Studies
Selfstudy
Selfstudy

Matrices Test - 18

Result Self Studies

Matrices Test - 18
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=[x,y],  B=\left[\begin{array}{ll}
    a & h\\
    h & b
    \end{array}\right],  C=\left[\begin{array}{l}
    x\\
    y
    \end{array}\right]$$,
    then $$\mathrm{A}\mathrm{B}\mathrm{C}=$$
    Solution
    Since, $$A = \begin{bmatrix}
    x &y
    \end{bmatrix}$$
    $$B = \begin{bmatrix}
    a &h \\
    h &b
    \end{bmatrix}$$
    $$C =\begin{bmatrix}
    x\\
    y
    \end{bmatrix}$$
    $$ABC = \begin{bmatrix}
    x &y
    \end{bmatrix}\begin{bmatrix}
    a &h \\
    h &b
    \end{bmatrix}\begin{bmatrix}
    x\\ 
    y
    \end{bmatrix}$$

    $$=\begin{bmatrix}
    xa+yh &xh+yb
    \end{bmatrix}\begin{bmatrix}
    x\\
    y
    \end{bmatrix}$$

    $$=\begin{bmatrix}
    x^{2}a+xyh+xyh+y^{2}b
    \end{bmatrix}$$

    $$=\begin{bmatrix}
    x^{2}a+2xyh+y^{2}b
    \end{bmatrix}$$
  • Question 2
    1 / -0
    If $$A=\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} $$, then $$ A^{3}-A^{2}=$$
    Solution
    $$A^{2}=A\times A=\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$$

    $$A^{3}=A^{2}\times A=\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}=\begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}$$

    $$A^{3}-A^{2}=\begin{bmatrix} -1 & 0 \\ 0 & 8 \end{bmatrix}-\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}=\begin{bmatrix} -2 & 0 \\ 0 & 4 \end{bmatrix}$$

    $$=2\begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix}=2A$$
  • Question 3
    1 / -0
    If the transpose of a matrix is equal to the additive
    inverse, then matrix is called _________
    matrix.

    Solution

  • Question 4
    1 / -0
    $$[A]_{n\times m}, [B]_{m\times m},$$ are the two matrices. If multiplication AB exist, then
    Solution
    For multiplication of two matrices to exist, number of columns in the first matrix must be equal to number of rows in the second matrix.
    So for a given case, $$m = m$$ which is always true.
    Therefore multiplication exists for every $$n$$ and $$m.$$ 
  • Question 5
    1 / -0
    If $$A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$, then $$A^{4}=$$
    Solution
    Given, $$A=\begin{bmatrix} 0&1 \\1&0\end{bmatrix}$$

    $$A^{2}=A\times A=\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

    $$A^{4}=A^{2}\times A^{2}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
  • Question 6
    1 / -0
    If $$I = \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix},$$ then find $$I^3$$
    Solution
    $$I^n$$ ( for any natural $$n$$ ) $$= I.$$ 
    $$I$$ is known as the identity matrix.
  • Question 7
    1 / -0
    If $$A= \begin{bmatrix}
    1 & 2 & 3\\
    4 & 5 & 6
    \end{bmatrix}$$ and $$B= \begin{bmatrix}
    1\\
    0\\

    5\end{bmatrix},$$ then $$AB = $$
    Solution
    $$AB= \begin{bmatrix}
    1 &2  &3 \\
    4 &5  &6
    \end{bmatrix}\begin{bmatrix}
    1\\
    0\\
    5\end{bmatrix}=\begin{bmatrix}
    1+ 0+ 15\\
    4+ 0+30
    \end{bmatrix}=\begin{bmatrix}
    16\\
    34
    \end{bmatrix}$$
    Thus, C will be correct answer.
  • Question 8
    1 / -0
    If $$A = \begin{bmatrix}a & b\end{bmatrix},\space B = \begin{bmatrix}-b & -a \end{bmatrix}$$ and $$C = \begin{bmatrix}a \\ -a\end{bmatrix}$$, then the correct statement is
    Solution
    Given $$A = \begin{bmatrix}a & b\end{bmatrix}, B = \begin{bmatrix}-b & -a \end{bmatrix}$$ and $$C = \begin{bmatrix}a \\ -a\end{bmatrix}$$
    We will check by options.
    Clearly , $$A \ne -B$$ as their corresponding elements are different only.
    $$A+B= \begin{bmatrix}a-b & b-a\end{bmatrix}$$
    $$A-B=\begin{bmatrix}a+b & b+a\end{bmatrix}$$
    So, $$A+B \ne A-B$$

    Now,$$AC=\begin{bmatrix}a & b\end{bmatrix}\begin{bmatrix}a \\ -a\end{bmatrix}$$
    $$\Rightarrow AC=\begin{bmatrix}a^{2}-ab\end{bmatrix}$$
    $$BC=\begin{bmatrix}-b & -a \end{bmatrix}\begin{bmatrix}a \\ -a\end{bmatrix}$$
    $$\Rightarrow BC=\begin{bmatrix}a^{2}-ab\end{bmatrix}$$
    Hence, $$AC=BC$$
    Option $$C$$ is correct

    Now, $$CA=\begin{bmatrix}a \\ -a\end{bmatrix}\begin{bmatrix}a & b\end{bmatrix}$$
    $$\Rightarrow CA=\begin{bmatrix}a^{2}&ab\\-a^{2}&-ab \end{bmatrix}$$
    $$CB=\begin{bmatrix}a \\ -a\end{bmatrix}\begin{bmatrix}-b & -a \end{bmatrix}$$
    $$\Rightarrow CB=\begin{bmatrix}-ab&-a^{2}\\ab & a^{2}\end{bmatrix}$$
    Hence, $$CA\ne CB$$
  • Question 9
    1 / -0
    If $$\displaystyle A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} 0 & -2 & 4 \\ 1 & 3 & 2 \\ -1 & 1 & 5 \end{bmatrix}$$, then $$A + B$$ is
    Solution
    Given, $$\displaystyle A = \begin{bmatrix} 1 & -2 & 4 \\ 2 & 3 & 2 \\ 3 & 1 & 5 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} 0 & -2 & 4 \\ 1 & 3 & 2 \\ -1 & 1 & 5 \end{bmatrix}$$

    Therefore, $$A+B=\begin {bmatrix} 1+0 & -2-2 & 4+4 \\2+1 & 3+3 & 2+2 \\3-1 & 1+1 & 5+5\end {bmatrix}$$
    $$=\begin{bmatrix} 1 & -4 & 8 \\ 3 & 6 & 4 \\ 2 & 2 & 10 \end{bmatrix}$$
  • Question 10
    1 / -0
    If $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$ A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix},$$ then find the value of $$a+b+c.$$
    Solution
    Given, $$A = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 & 8\end{bmatrix},$$ $$B = \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 & 5\end{bmatrix}$$ and $$\quad A+B = \begin{bmatrix}1 & a & b \\ c & 2 & 13\end{bmatrix}$$ ....(1)
    Therefore, 
    $$\quad A+B = \begin{bmatrix}2 & 3 & 4 \\ -3 & 4 &

    8\end{bmatrix} + \begin{bmatrix}-1 & 4 & 7 \\ -3 & -2 &

    5\end{bmatrix}=\begin{bmatrix}2-1 & 3+4 & 4+7 \\ -3-3 & 4-2 & 8+5\end{bmatrix}= \begin{bmatrix}1 & 7 & 11 \\ -6 & 2 & 13\end{bmatrix}$$ .....(2)
    By equating (1) and (2), we get
    $$ a+b+c=7+11-6=12$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now