Self Studies
Selfstudy
Selfstudy

Matrices Test - 21

Result Self Studies

Matrices Test - 21
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A$$ and $$B$$ are symmetric matrices of order $$\displaystyle n,\left( A\neq B \right) $$, then
    Solution
    Since $$A$$ and $$B$$ are symmetric matrices, $$A' = A$$ and $$B'=B$$
    $$\therefore (A+B)'=A'+B'=A+B$$
    $$\therefore A+B$$ is symmetric matrix
  • Question 2
    1 / -0
    If $$ A= \begin{bmatrix} 1 & 2\end{bmatrix}, B=\begin{bmatrix} 3 & 4\end{bmatrix}$$ then $$A+B=$$
    Solution
    Given $$A=\begin{bmatrix} 1 & 2 \end{bmatrix}$$
    $$B=\begin{bmatrix} 3 & 4 \end{bmatrix}$$
    Now, $$A+B=\begin{bmatrix} 1+3 & 2+4 \end{bmatrix}$$
    $$\Rightarrow A+B=\begin{bmatrix} 4 & 6 \end{bmatrix}$$
    $$\therefore $$Option C is correct
  • Question 3
    1 / -0
    Find the output order for the following matrix multiplication $$A_{4 \times 2}\times B_{2\times4}$$?
    Solution
    Note: 
    1. $$m×n$$ is the order of matrix $$AB$$ if the order of matrix $$A$$ is $$m×p$$ and the order of $$B$$ is $$p×n$$.
    2. For matrix multiplication to work, the columns of the second matrix have to have the same number of entries as do the rows of the first matrix.

    Here $$A,B$$ are conformant matrices, Multiplication is possible.
    Therefore, $$A$$ is of size $$4 \times 2$$, and $$B$$ is of size $$2 \times 4$$, in which case the output is of size $$4 \times 4$$ and is the matrix product of $$A$$ and $$B$$.
  • Question 4
    1 / -0
    If the matrices $$A=\begin{bmatrix}2 & 1 & 3 \\4 & 1 & 0\end{bmatrix}$$ and $$B=\begin{bmatrix}1 & -1\\ 0 & 2 \\5 & 0\end{bmatrix}$$, then AB will be
    Solution
    Given, $$A=\begin{bmatrix}2 & 1 & 3 \\ 4 & 1 & 0\end{bmatrix}$$ and $$B=\begin{bmatrix}1 & -1 \\ 0 & 2 \\ 5 & 0\end{bmatrix}$$
    Now, $$AB=\begin{bmatrix}2\times1+1\times0+3\times5 & 2\times(-1)+1\times2+3\times0 \\ 4\times1+1\times0+0\times5 & 4\times(-1)+1\times2+0\times0\end{bmatrix}$$
    $$=\begin{bmatrix}17 & 0 \\ 4 & -2\end{bmatrix}$$
  • Question 5
    1 / -0
    What is the output for the following matrix multiplication $$A_{3 \times 2}\times B_{2\times 3}$$?
    Solution
    Here $$A,B$$ are conformant matrices.
    Therefore, $$A$$ is of size $$3 \times 2$$, and $$B$$ is of size $$2 \times 3$$, in which case the output is of size $$3 \times 3$$ and is the matrix product of $$A$$ and $$B$$.
    The result will be $$(AB)_{3\times 3}.$$
  • Question 6
    1 / -0
    Find the output order for the following matrix multiplication $$X_{5 \times 3}\times Y_{3\times 5}$$?
    Solution
    Since, $$X$$ is of size $$5 \times 3$$, and $$Y$$ is of size $$3 \times 5$$
    $$\therefore$$ The matrix product of $$X$$ and $$Y$$ has order $$5 \times 5.$$
  • Question 7
    1 / -0
    Find the value in place of question mark in the following:
    $$A_{6 \times 2}\times B_{2\times 6} = C_{?\times6}$$?
    Solution
    $$A_{6 \times 2}$$ denotes a matrix having $$6$$ rows and $$2$$ columns.
    Similarly, $$B_{2 \times 6}$$ denotes a matrix having $$2$$ rows and $$6$$ columns.
    When multiplied, we get $$6$$ rows and $$6$$ columns based on the matrix multiplication rule.
    Thus, if the product of matrices $$A$$ and $$B$$ is $$C$$, we can write the answer as $$C_{6 \times 6}$$
  • Question 8
    1 / -0
    $$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta\end{bmatrix}$$ and $$AB=BA=I$$, then B is equal to
    Solution
    Given, $$A=\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$ and $$AB=BA=I$$
    $$\Rightarrow B=A^{-1}I=A^{-1}$$
    $$=\displaystyle\frac{1}{\cos^2\theta +\sin^2\theta}\begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
    $$\Rightarrow B=\begin{bmatrix}\cos\theta & \sin\theta \\ -\sin\theta & \cos\theta\end{bmatrix}$$
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}$$ is symmetric matrix then the value of $$x$$ is
    Solution
    Since $$A$$ is symmetric matrix, then
    $$A=A'$$
    $$\Rightarrow$$ $$\begin{bmatrix} 3 & x-1 \\ 2x+3 & x+2 \end{bmatrix}=\begin{bmatrix} 3 & 2x+3 \\ x-1 & x+2 \end{bmatrix}$$
    $$\Rightarrow $$ $$x-1=2x+3$$ $$\Rightarrow$$ $$x=-4$$ 
  • Question 10
    1 / -0
    What is the output order for the following matrix multiplication $$A_{2 \times 1}\times B_{1\times 2}$$?
    Solution
    We know that $$m\times n $$ is the order of matrix $$AB$$ if the order of matrix $$A$$ is $$m\times p$$ and the order of $$B$$ is $$p\times n.$$
    Since, $$A$$ is of size $$2 \times 1$$, and $$B$$ is of size $$1 \times 2$$, in which case the output is of size $$2 \times 2$$ 
    and is the matrix product of $$A$$ and $$B$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now