Self Studies

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A = \begin{bmatrix} 2& 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2\end{bmatrix}$$, then $$A^6 =$$

  • Question 2
    1 / -0

    Least number of changes for the expression $$ax^{2} + bxy + cy^{2} + dx + ey + f$$ to be symmetric in x and y is

  • Question 3
    1 / -0

    If $$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$, $$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$, then $$BA =$$

  • Question 4
    1 / -0

    If $$A$$ and $$B$$ are square matrices such that $$AB = I$$ and $$BA = I$$, then $$B$$ is

  • Question 5
    1 / -0

    Consider the following statements in respect of the matrix $$A = \begin{bmatrix} 0 & 1 & 2\\ -1 & 0  & -3 \\ -2 & 3 & 0 \end{bmatrix}$$ :
    1. The matrix A is skew-symmetric.
    2. The matrix A is symmetric.
    3. The matrix A is invertible.
    Which of the above statements is/are correct ? 

  • Question 6
    1 / -0

    If the sum of the matrices $$\begin{bmatrix} x \\ x \\ y \end{bmatrix},\begin{bmatrix} y \\ y \\ z \end{bmatrix}$$ and $$\begin{bmatrix} z \\ 0 \\ 0 \end{bmatrix}$$ is the matrix $$\begin{bmatrix} 10 \\ 5 \\ 5 \end{bmatrix}$$, then what is the value of  $$y$$?

  • Question 7
    1 / -0

    If $$[2\ 3\ 4] \begin{bmatrix}1 & x &3 \\ 2 & 4 & 5\\ 3 & 2 &x \end{bmatrix} \begin{bmatrix} x\\ 2 \\  0 \end{bmatrix} = 0$$, then $$x =$$ ________.

  • Question 8
    1 / -0

    If $$A$$ is any matrix, then the product $$AA$$ is defined only when A is a matrix of order $$m \times n$$ where : 

  • Question 9
    1 / -0

    Consider the following statements:
    1. The product of two non-zero matrices can never be identity matrix.
    2. The product of two non-zero matrices can never be zero matrix.
    Which of the above statements is/are correct?

  • Question 10
    1 / -0

    What is $$\begin{bmatrix} x & y & z \end{bmatrix} \begin{bmatrix} a& h & g\\ h & b & f\\ g & f & c\end{bmatrix}$$ equal to?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now