Self Studies
Selfstudy
Selfstudy

Matrices Test - 23

Result Self Studies

Matrices Test - 23
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & x-3 & x-2 \\ 3 & -2 & -1 \\ 4 & -1 & -5 \end{bmatrix}$$ is a symmetric matrices then $$x=$$
    Solution
    If $$A$$ is  a symmetric matrix then $$a_{ij}=a_{ji}$$
    i.e. $$a_{12}=a_{21}$$ and $$a_{13}=a_{31}$$
    $$\therefore x-3=3$$ and $$x-2=4$$
    adding both we get$$ 2x-5=7$$
    $$\Rightarrow 2x=12 \Rightarrow x=6$$
  • Question 2
    1 / -0
    Given $$A$$ is a matrix of order $$3\times 2$$. If order of $$AB$$ is $$3\times 3$$, then order of $$B$$ will be 
    Solution
    Given $$A$$ is a matrix of order $$3\times 2$$.
    Now $$AB$$ is of order $$3\times 3$$.
    The product $$AB$$ is possible if the number of columns of $$A(=2)$$ is equal to the number of rows of $$B$$.
    Since order of $$AB$$ is $$3\times 3$$.
    Also the number of columns of $$B$$ is same as the number of columns of $$AB$$.
    Now $$A$$ is of order $$2\times 3$$.
  • Question 3
    1 / -0
    Given $$A= \begin{bmatrix}  3&4  \\ 4&-3 \end{bmatrix}$$ and $$B = \begin{bmatrix} 24 \\ 7\end{bmatrix},$$ find the matrix $$X$$ such that $$AX=B$$.
    Solution
    Given, $$AX=B$$

    To perform matrix multiplication, $$AX$$ the number of columns in A must equal the number of rows in $$X$$

    Hence, $$X$$ should be matrix of order $$2\times1$$

    Say, $$X= \begin{bmatrix}x \\y\end{bmatrix}$$

    Consider, $$AX=B$$

    $$\begin{bmatrix}3&4 \\4&-3\end{bmatrix}\begin{bmatrix}x \\y\end{bmatrix}=\begin{bmatrix}24 \\7\end{bmatrix}$$

    $$\begin{bmatrix}3x+4y \\4x-3y\end{bmatrix}=\begin{bmatrix}24 \\7\end{bmatrix}$$

    $$\therefore 3x+4y=24$$ and $$4x-3y=7$$

    Solving the above equations, we get
    $$x=4 \ , \ y=3$$

    $$\therefore X= \begin{bmatrix}4 \\3\end{bmatrix}$$

    Option B.
  • Question 4
    1 / -0
    The inverse of $$\begin{bmatrix} 1 & a & b \\ 0 & x & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ is $$\begin{bmatrix} 1 & -a & -b \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$ then $$x=$$
    Solution
    $$\begin{array}{l} \left[ { \begin{array} { *{ 20 }{ c } }1 & a & b \\ 0 & x & 0 \\ 0 & 0 & 1 \end{array} } \right] \left[ { \begin{array} { *{ 20 }{ c } }1 & { -a } & { -b } \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} } \right] =\left[ { \begin{array} { *{ 20 }{ c } }1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} } \right]  \\ =\left[ { \begin{array} { *{ 20 }{ c } }1 & 0 & 0 \\ 0 & x & 0 \\ 0 & 0 & 1 \end{array} } \right] =\left[ { \begin{array} { *{ 20 }{ c } }1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array} } \right]  \\ \Rightarrow x=1 \end{array}$$
  • Question 5
    1 / -0
    If $$A = \left[ {\begin{array}{*{20}{c}}  2&{ - 3} \\   { - 4}&1 \end{array}} \right]$$, then $$\left[ {3{A^2} + 12A} \right]$$ is equal to 
    Solution
    We have,
    $$A=\left[ \begin{matrix} 2 & -3 \\ -4 & 1 \end{matrix} \right] $$

    $$A^2 = A \times A =\left[ \begin{matrix} 2 & -3 \\ -4 & 1 \end{matrix} \right] \times \left[ \begin{matrix} 2 & -3 \\ -4 & 1 \end{matrix} \right] $$
    $$A^2=\left[ \begin{matrix} 16 & -9 \\ -12 & 13 \end{matrix} \right] $$

    Thus,
    $$3A^2=\left[ \begin{matrix} 48 & -27 \\ -36 & 39 \end{matrix} \right] $$

    Now, $$12A=\left[ \begin{matrix} 24 & -36 \\ -48 & 12 \end{matrix} \right] $$

    Therefore,
    $$[3A^2 + 12A]=\left[ \begin{matrix} 48 & -27 \\ -36 & 39 \end{matrix} \right] +\left[ \begin{matrix} 24 & -36 \\ -48 & 12 \end{matrix} \right] \\ [3A^2 +12A]= \left[ \begin{matrix} 72 & -63 \\ -84 & 51 \end{matrix} \right] $$
  • Question 6
    1 / -0
    $$A=\begin{bmatrix} a & b \\ 0 & c \end{bmatrix}$$ then $${A}^{-1}+(A-aI)(A-cI)=$$
    Solution
    $$A=\begin{bmatrix}a&b\\0&c\end{bmatrix}$$
    $$A^{-1}=\dfrac{1}{ac-0(b)}\begin{bmatrix}c&-b\\0&a\end{bmatrix}=\dfrac{1}{ac}\begin{bmatrix}c&-b\\0&a\end{bmatrix}$$
    $$(A-aI)(A-cI)=A^{2}-(a+c)A+acI=\begin{bmatrix}a&b\\0&c\end{bmatrix}\begin{bmatrix}a&b\\0&c\end{bmatrix}-(a+c)\begin{bmatrix}a&b\\0&c\end{bmatrix}+acI=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$
    $$A^{-1}+(A-{a}I)(A-{c}I)=\dfrac{1}{ac}\begin{bmatrix}c&-b\\0&a\end{bmatrix}$$
  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} \cos { x }  & \sin { x }  \\ -\sin { x }  & \cos { x }  \end{bmatrix}$$ and $$A(AdjA)=k\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$ then the value of $$k$$ is
    Solution
    $$A(AdjA)=\begin{bmatrix}c^{2}+s^{2}&cs-cs\\-cs+cs&c^{2}+s^{2}\end{bmatrix}=\begin{bmatrix}1&0\\0&1\end{bmatrix}\implies k=1$$
  • Question 8
    1 / -0
    If $$A=\begin{bmatrix} 0 & a+1 & b-2 \\ 2a-1 & 0 & c-2 \\ 2b+1 & 2+c & 0 \end{bmatrix}$$ is skew symmetric then $$a+b+c$$=
    Solution
    $$A^{T}+A=0\implies a+1+2a-1=0;b-2+2b+1=0;c+2+c-2=0\implies a=c=0,$$
    $$b=\displaystyle \frac{1}{3}\implies a+b+c=\frac{1}{3}$$
  • Question 9
    1 / -0
    If $$A$$ is square  matrix such that $${A^2} = 1$$ then $${A^{ - 1}} = ?$$
    Solution
    $${ A }^{ 2 }={ 1 }$$ can be witten as

    $$ { A }^{ 2 }={ I }$$
    multiply $${ { A }^{ -1 } }$$ on both side 
    $$\\ { { A }^{ -1 } }\times ({ A }\times { A })={ A }^{ -1 }\times { I }\\ ({ A }^{ -1 }\times { A })\times { A }={ A }^{ -1 }\\ { I }\times { A }={ { A }^{ -1 } }\\ { A }^{ -1 }={ A }\\ $$
    Corrrect option is B
  • Question 10
    1 / -0
    If $$A=\begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$ then $$A^ {2}$$ is equal to 
    Solution
    $$A^2= \begin{bmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 1\end{bmatrix} \times \begin{bmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 1\end{bmatrix}$$

    $$A^2=\begin{bmatrix} 2 & 0 & 2\\ 0 & 0 & 0\\ 2 & 0 & 2\end{bmatrix}$$

    $$A^2=2\begin{bmatrix} 1 & 0 & 1\\ 0 & 0 & 0\\ 1 & 0 & 1\end{bmatrix}=2A$$

    $$\therefore A^2=2A$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now