Self Studies

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If A=[1111]A=\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} then A100A^{100}=..............

  • Question 2
    1 / -0

    iF A=[ 1 1 1 1]A=\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}, then the expression A32A2A^3-2A^2 is 

  • Question 3
    1 / -0

    If A=[122334]A=\begin{bmatrix} 1&2 \\ 2 &3\\3 & 4\end{bmatrix} and B=[1 22 1],B=\begin{bmatrix} 1 &  2\\ 2 &  1\end{bmatrix}, then which one of the following is correct?

  • Question 4
    1 / -0

    lf $$\left[\begin{array}{ll}
    x & 1\\
    1 & y
    \end{array}\right]\left[\begin{array}{ll}
    1 & 4\\
    2 & 6
    \end{array}\right] =\left[\begin{array}{ll}
    4 & 14\\
    7 & 22
    \end{array}\right],then, then (x,y)=$$

  • Question 5
    1 / -0

    If D1D_{1} and D2D_{2} are two 3 x 3 diagonal matrices, then 

  • Question 6
    1 / -0

    $$\left[\begin{array}{lll}
    x & 0 & 0\\
    y & \mathrm{z} & 0\\
    l & m & n
    \end{array}\right]\left[\begin{array}{lll}
    a & 0 & 0\\
    0 & b & 0\\
    0 & 0 & c
    \end{array}\right] =$$

  • Question 7
    1 / -0

    A=[3411]A=\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}, then A2=A^{2}=

  • Question 8
    1 / -0

    If $$\mathrm{A}= \left[\begin{array}{lll}
    2 & 0 & 0\\
    0 & 2 & 0\\
    0 & 0 & 2
    \end{array}\right],then, then \mathrm{A}^{4}$$ is equal to 

  • Question 9
    1 / -0

    If A=[abba]A=\begin{bmatrix} a & b \\ b & a \end{bmatrix} and A2=[α β β α ]{ A }^{ 2 }=\begin{bmatrix} \alpha  & \beta  \\ \beta  & \alpha  \end{bmatrix}, then

  • Question 10
    1 / -0

    If A=[aij]3×3A=[a_{ij}]_{3\times 3} is a square matrix so that aij=i2j2a_{ij}=i^{2}-j^{2}, then AA is a  

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now