Self Studies
Selfstudy
Selfstudy

Matrices Test - 24

Result Self Studies

Matrices Test - 24
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$$ then $$A^{100}$$=..............
    Solution

  • Question 2
    1 / -0
    iF $$A=\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}$$, then the expression $$A^3-2A^2$$ is 
    Solution
    $$A=\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}$$

    $$\Rightarrow$$  $$A^2=\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}$$ $$\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}$$

                $$=\begin{bmatrix}1+1&-1-1\\-1-1&1+1\end{bmatrix}$$

                $$=\begin{bmatrix}2&-2\\-2&2\end{bmatrix}$$

    $$\Rightarrow$$  $$A^2=\begin{bmatrix}2&-2\\-2&2\end{bmatrix}$$

    $$\Rightarrow$$  $$A^3=$$ $$\begin{bmatrix}2&-2\\-2&2\end{bmatrix}$$ $$\begin{bmatrix}  1&  -1\\  -1&  1\end{bmatrix}$$

                $$=\begin{bmatrix}2+2&-2-2\\-2-2&2+2\end{bmatrix}$$

                $$=\begin{bmatrix}4&-4\\-4&4\end{bmatrix}$$

    $$\Rightarrow$$  $$A^3=\begin{bmatrix}4&-4\\-4&4\end{bmatrix}$$

    $$\Rightarrow$$  $$A^3-2A^2=$$  $$\begin{bmatrix}4&-4\\-4&4\end{bmatrix}$$ $$-2\begin{bmatrix}2&-2\\-2&2\end{bmatrix}$$

                            $$=\begin{bmatrix}4&-4\\-4&4\end{bmatrix}-\begin{bmatrix}4&-4\\-4&4\end{bmatrix}$$

                            $$=\begin{bmatrix}4-4&-4+4\\-4+4&4-4\end{bmatrix}$$

                            $$=\begin{bmatrix} 0&0\\0&0\end{bmatrix}$$

    $$\therefore$$  The expression $$A63-2A^2$$ is null matrix.
  • Question 3
    1 / -0
    If $$A=\begin{bmatrix} 1&2 \\ 2 &3\\3 & 4\end{bmatrix}$$ and $$B=\begin{bmatrix} 1 &  2\\ 2 &  1\end{bmatrix},$$ then which one of the following is correct?
    Solution
    $$AB$$ exists but $$BA$$ does not exist.

    We know that, for matrices multiplications, with orders

    $$m_1\times n_1,m_2\times n_2$$ condition is, $$n_1=m_2$$

    Given, $$A_{3 \times 2}, B_{2 \times 2}$$

    So, $$n_1=m_2\rightarrow 2=2$$ matrix $$AB$$ exists.

    Also, for $$BA$$, we have, $$B_{2 \times 2}, A_{3 \times 2}$$

    Thus, $$n_1\neq m_2\rightarrow 2\neq 3$$ matrix $$BA$$ does not exist.
  • Question 4
    1 / -0
    lf $$\left[\begin{array}{ll}
    x & 1\\
    1 & y
    \end{array}\right]\left[\begin{array}{ll}
    1 & 4\\
    2 & 6
    \end{array}\right] =\left[\begin{array}{ll}
    4 & 14\\
    7 & 22
    \end{array}\right]$$, then $$(x,y)$$$$=$$
    Solution
    We have,  $$\left[\begin{array}{ll}
    x & 1\\
    1 & y
    \end{array}\right]\left[\begin{array}{ll}
    1 & 4\\
    2 & 6
    \end{array}\right] =\left[\begin{array}{ll}
    4 & 14\\
    7 & 22
    \end{array}\right]$$

    $$\Rightarrow \left[\begin{array}{ll}
    x\times1+1\times 2 & x\times4+1\times 6 \\
    1\times 1+y\times 2 & 1\times 4+y\times 6
    \end{array}\right]=\left[\begin{array}{ll}
    4 & 14\\
    7 & 22
    \end{array}\right]$$

    $$\Rightarrow \left[\begin{array}{ll}
    x+2 & 4x+6\\
    2y+1 & 6y+4
    \end{array}\right]=\left[\begin{array}{ll}
    4 & 14\\
    7 & 22
    \end{array}\right]$$

    Now equating corresponding elements,
    we get,  $$(x,y)=(2,3)$$
  • Question 5
    1 / -0
    If $$D_{1}$$ and $$D_{2}$$ are two 3 x 3 diagonal matrices, then 
    Solution
    If $$D_{1}$$ and $$D_{2}$$ are diagonal matrix then 
    $$D_{1}D_{2},D_{1}+D_{2}$$ is also a diagonal matrix.
    $$A=\begin{bmatrix}
    a_{11} &  &  & \\
     & a_{22} &  & \\
     &  & . & \\
     &  &  &a_{nn}
    \end{bmatrix}$$

    $$B=\begin{bmatrix}
    l_{11} &  &  & \\
     & l_{22} &  & \\
     &  & . & \\
     &  &  &l_{nn}
    \end{bmatrix}$$

    then,
    $$AB=\begin{bmatrix}
    a_{11}l_{11} &  &  & \\
     & a_{22}l_{22} &  & \\
     &  & . & \\
     &  &  &a_{nn}l_{nn}
    \end{bmatrix}$$

    $$A+B=\begin{bmatrix}
    a_{11}+l_{11} &  &  & \\
     & a_{22}+l_{22} &  & \\
     &  & . & \\
     &  &  &a_{nn}+l_{nn}
    \end{bmatrix}$$

    $$A^2=\begin{bmatrix}
    a_{11}^{2} &  &  & \\
     & a_{22}^{2} &  & \\
     &  & . & \\
     &  &  &a_{nn}^{2}
    \end{bmatrix}$$

    $$\therefore D_{1}^{2}+D_{2}^{2}$$ is also a diagonal matrix.
  • Question 6
    1 / -0
    $$\left[\begin{array}{lll}
    x & 0 & 0\\
    y & \mathrm{z} & 0\\
    l & m & n
    \end{array}\right]\left[\begin{array}{lll}
    a & 0 & 0\\
    0 & b & 0\\
    0 & 0 & c
    \end{array}\right] =$$
    Solution
    We know that for the multiplication of matrices $$AB=C $$
    So, $$C_{ij}=a_{ir} b_{rj}$$

    $$\therefore$$ $$\begin{bmatrix}
    x & 0 & 0\\ 
    y & z & 0\\ 
    l & m & n
    \end{bmatrix}\begin{bmatrix}
    a &  0& 0\\ 
    0 & b & 0\\ 
    0 & 0 & c
    \end{bmatrix}$$

    $$=\begin{bmatrix}
    ax & 0 & 0\\ 
    ay &  bz& 0\\ 
    al & mb & nc
    \end{bmatrix}$$
  • Question 7
    1 / -0
    $$A=\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}$$, then $$A^{2}=$$
    Solution
    Given, $$A=\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}\\ A^{ 2 }=\begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}\times \begin{bmatrix} 3 & -4 \\ 1 & -1 \end{bmatrix}\\ =\begin{bmatrix} 9-4 & -12+4 \\ 3-1 & -4+1 \end{bmatrix}=\begin{bmatrix} 5 & -8 \\ 2 & -3 \end{bmatrix}$$
  • Question 8
    1 / -0
    If $$\mathrm{A}= \left[\begin{array}{lll}
    2 & 0 & 0\\
    0 & 2 & 0\\
    0 & 0 & 2
    \end{array}\right]$$, then $$\mathrm{A}^{4}$$ is equal to 
    Solution
    $$A = 2 \begin{bmatrix}
    1 &0  &0 \\
    0 &1  &0 \\
    0 &0  &1
    \end{bmatrix}$$

    $$A^{4} = 16 \begin{bmatrix}
    1 &0  &0 \\
    0 &1  &0 \\
    0 &0  &1
    \end{bmatrix}$$

    $$A^{4} = 8 \times 2 \begin{bmatrix}
    1 &0  &0 \\
    0 &1  &0 \\
    0 &0  &1
    \end{bmatrix}$$

    $$\therefore A^{4} = 8 \times A$$
  • Question 9
    1 / -0
    If $$A=\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$ and $${ A }^{ 2 }=\begin{bmatrix} \alpha  & \beta  \\ \beta  & \alpha  \end{bmatrix}$$, then
    Solution
    We are given $$A=\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
    Now we find $${ A }^{ 2 }=AA=\begin{bmatrix} a & b \\ b & a \end{bmatrix}\begin{bmatrix} a & b \\ b & a \end{bmatrix}$$
    $${ \Rightarrow A }^{ 2 }=\begin{bmatrix} { a }^{ 2 }+{ b }^{ 2 } & 2ab \\ 2ab & { a }^{ 2 }+{ b }^{ 2 } \end{bmatrix}$$
    Compare it with the given $${ A }^{ 2 }$$ matrix. we get
    $$\alpha ={ a }^{ 2 }+{ b }^{ 2 },\beta =2ab$$
  • Question 10
    1 / -0
    If $$A=[a_{ij}]_{3\times 3}$$ is a square matrix so that $$a_{ij}=i^{2}-j^{2}$$, then $$A$$ is a  
    Solution
    Given: 
    $$A = [a_{ij}]_{(3\times3)}$$

    where, $$a_{ij} = i^2-j^2$$

    $$\therefore a_{ij}=0$$ if $$i=j$$

    Now,
    $$a_{12}=1^{2}-2^{2}=-3$$

    $$a_{13}=1^{2}-3^{2}=-8$$

    $$a_{21}=2^2-1^2 = 3$$

    $$a_{23}=2^{2}-3^{2}=-5$$

    $$a_{31}=3^2 - 1^2 = 8$$

    $$a_{32}=3^2-2^2 = 5$$


    $$\therefore A=\begin{bmatrix}
    0 &-3  &-8 \\
    3 &  0&-5 \\
     8& 5 &0
    \end{bmatrix}$$

    Here, $$A^T=-A$$

    $$\therefore\ A$$ is a skew-symmetric matrix.

    Hence, option C.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now