Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\mathrm{A}=\left[\begin{array}{ll}
    0 & 1\\
    1 & 0
    \end{array}\right]$$, then $$\mathrm{A}^{5}=$$

  • Question 2
    1 / -0

    If $$\mathrm{A}=\left[\begin{array}{ll}
    1 & 2\\
    0 & 3
    \end{array}\right]$$ and $$\mathrm{B}=[3 \space-1]$$, then $$\mathrm{B}\mathrm{A}=$$

  • Question 3
    1 / -0

    $$ If \space A= \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$, then A is 

  • Question 4
    1 / -0

     If A = $$\begin{bmatrix}
    x & 1\\
    1 & 0
    \end{bmatrix}$$ and $$A^{2}$$ is identity matrix, then $$x= $$

  • Question 5
    1 / -0

    lf $$\mathrm{A}=\left[\begin{array}{ll}
    2 & -1\\
    3 & -2
    \end{array}\right],$$ then $$\mathrm{A}^{5}=$$

  • Question 6
    1 / -0

    $$L=\left[\begin{array}{lll}
    2 & 3 & 5\\
    4 & 1 & 2\\
    1 & 2 & 1
    \end{array}\right] =P+Q$$, $$P$$  is a symmetric matrix, $${Q}$$ is a skew-symmetric matrix then $${P}$$ is equal to

  • Question 7
    1 / -0

     If  $$I=\begin{bmatrix}
    1 & 0\\
    0 & 1
    \end{bmatrix}$$ and E =$$\begin{bmatrix}
    0 & 1\\
    0 & 0
    \end{bmatrix}$$, then $$\left ( 2I+3E \right )^{3}=$$ 

  • Question 8
    1 / -0

    If in a square matrix $$A=\left[ { a }_{ ij } \right] $$, we find that $${ a }_{ ij }={ a }_{ ji }\quad \forall \quad i,j$$ , then $$A$$ is

  • Question 9
    1 / -0

    If P = $$ \begin{bmatrix}
    1\\
    3\\

    4\end{bmatrix}$$ , Q = $$\begin{bmatrix}
    2 & -1&5
    \end{bmatrix}$$ then PQ = 

  • Question 10
    1 / -0

    $$\mathrm{A}$$: If $$\mathrm{A}=\left\{\begin{array}{ll}
    1 & -1\\
    -1 & 1
    \end{array}\right\} $$ and $$\mathrm{B}=\left\{\begin{array}{ll}
    2 & 2\\
    2 & 2
    \end{array}\right\},$$ then $$\mathrm{A}\mathrm{B}=0$$ 
    $$\mathrm{R}$$: If $$\mathrm{A}\mathrm{B}=0\Rightarrow  \mathrm{A}$$ or $$\mathrm{B}$$ need not be null matrices.

     The correct answer is 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now