Self Studies
Selfstudy
Selfstudy

Matrices Test - 25

Result Self Studies

Matrices Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\mathrm{A}=\left[\begin{array}{ll}
    0 & 1\\
    1 & 0
    \end{array}\right]$$, then $$\mathrm{A}^{5}=$$
    Solution
    Given, A $$=$$$$\begin{bmatrix} 0 &  1 \\  1  &  0 \end{bmatrix}$$

    $$A^2$$$$=$$$$\begin{bmatrix} 1 &  0 \\  0  &  1 \end{bmatrix}$$

    $$A^5$$$$=$$$${A^2}\times{A^2}\times{A}$$

    $$A^5$$$$=$$ $$\begin{bmatrix} 0 &  1 \\  1  &  0 \end{bmatrix}$$  $$=$$$$A$$

  • Question 2
    1 / -0
    If $$\mathrm{A}=\left[\begin{array}{ll}
    1 & 2\\
    0 & 3
    \end{array}\right]$$ and $$\mathrm{B}=[3 \space-1]$$, then $$\mathrm{B}\mathrm{A}=$$
    Solution
    The value of $$\mathrm{BA}$$
    $$=[3   \space -1]\begin{bmatrix}1 & 2\\0 & 3\end{bmatrix}$$
    $$=[ 3\times 1-1\times 0    \ \   \space    3\times 2-1\times 3 ]$$
    $$=[3 \ \ \  \space     3]$$
  • Question 3
    1 / -0
    $$ If \space A= \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$, then A is 

    Solution
    Here The transpose of the matrix A is 
    $$ = \begin{bmatrix} a & h & g \\ h & b & f \\ g & f & c \end{bmatrix}$$
    $$ \therefore A = A^{T}$$
    And a  symmetric matrix  is a square matrix that is equal to its transpose.
    Hence the answer is option C
  • Question 4
    1 / -0
     If A = $$\begin{bmatrix}
    x & 1\\
    1 & 0
    \end{bmatrix}$$ and $$A^{2}$$ is identity matrix, then $$x= $$
    Solution
    Since, $$A=\begin{bmatrix}
    x &1 \\
    1 &0
    \end{bmatrix}, A^2 =I$$

    $$A^{2}=\begin{bmatrix}
    x &1 \\
    1 &0
    \end{bmatrix}\begin{bmatrix}
    x &1 \\
    1 &0
    \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix}
    x^{2}+1 &x \\
    x &1
    \end{bmatrix}= \begin{bmatrix}
    1 &0 \\
    0 &1
    \end{bmatrix}$$

    $$\Rightarrow$$ So $$x=0$$

    Option D is the correct answer.
  • Question 5
    1 / -0
    lf $$\mathrm{A}=\left[\begin{array}{ll}
    2 & -1\\
    3 & -2
    \end{array}\right],$$ then $$\mathrm{A}^{5}=$$
    Solution
    $$A^2=\begin{bmatrix}
    2 & 3\\
    3 & -2
    \end{bmatrix}\begin{bmatrix}
    2 & 3\\
    3 & -2
    \end{bmatrix}=\begin{bmatrix}
    1 & 0\\
    0 & 1
    \end{bmatrix}$$
    $$A^3=AI=A$$
    $$A^5=A^3(A^2)=A^3I=A(A^2I)=A$$
  • Question 6
    1 / -0
    $$L=\left[\begin{array}{lll}
    2 & 3 & 5\\
    4 & 1 & 2\\
    1 & 2 & 1
    \end{array}\right] =P+Q$$, $$P$$  is a symmetric matrix, $${Q}$$ is a skew-symmetric matrix then $${P}$$ is equal to
    Solution
    Given ,$$ P+Q=\begin{bmatrix}
    2 & 3 & 5\\
    4 & 1 & 2\\
    1 & 2 & 1
    \end{bmatrix}$$-----(i)

    ans $$P$$ is symmetric and $$Q$$ is skew symmetric matrix. So, by property of transpose (7),

    $$P=P^{T}$$ and $$Q^{T}=-Q$$

    $$\therefore$$ equation (i), $$P^{T}-Q=\begin{bmatrix}
    2 & 4 & 1\\
    3 & 1 & 2\\
    5 & 2 & 1
    \end{bmatrix}$$---------(ii)

    Add (i) and (ii), we get

    $$P+P^{T}=\begin{bmatrix}
    4 & 7 & 6\\
    7 & 2 & 4\\
    6 & 4 & 2
    \end{bmatrix}, 
    2P=\begin{bmatrix}
    4 & 7 & 6\\
    7 & 2 & 4\\
    6 & 4 & 2
    \end{bmatrix}$$

    $$\Rightarrow P=\begin{bmatrix}
    2 & 3.5 & 3\\
    3.5 & 1 & 2\\
    3 & 2 & 1
    \end{bmatrix}$$
  • Question 7
    1 / -0
     If  $$I=\begin{bmatrix}
    1 & 0\\
    0 & 1
    \end{bmatrix}$$ and E =$$\begin{bmatrix}
    0 & 1\\
    0 & 0
    \end{bmatrix}$$, then $$\left ( 2I+3E \right )^{3}=$$ 
    Solution
    Consider, $$ 2I+3E$$
    $$2\begin{bmatrix}
    1 &0 \\
    0 &1
    \end{bmatrix}+3\begin{bmatrix}
    0 &1 \\
    0 &0
    \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix}
    2 &0 \\
    0 &2
    \end{bmatrix}+\begin{bmatrix}
    0 &3 \\
    0 &0
    \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix}
    2 &3 \\
    0 &2
    \end{bmatrix}$$
    Now $$(2I+3E)^3$$
    $$\Rightarrow \begin{bmatrix}
    2 &3 \\
    0 &2
    \end{bmatrix}\begin{bmatrix}
    2 &3 \\
    0 &2
    \end{bmatrix}\begin{bmatrix}
    2 &3 \\
    0 &2
    \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix}
    4 &6+6 \\
    0 &4
    \end{bmatrix}\begin{bmatrix}
    2 &3 \\
    0 &2
    \end{bmatrix}$$
    $$=\begin{bmatrix}
    8 &12+24 \\
    0 &8
    \end{bmatrix}=\begin{bmatrix}
    8 &36 \\
    0 &8
    \end{bmatrix}=8I+36E$$
    $$\therefore(C)$$
  • Question 8
    1 / -0
    If in a square matrix $$A=\left[ { a }_{ ij } \right] $$, we find that $${ a }_{ ij }={ a }_{ ji }\quad \forall \quad i,j$$ , then $$A$$ is
    Solution
    Given square matrix $$A=\left\{ { a }_{ ij } \right\} $$ and $${ a }_{ ij }={ a }_{ ji }$$
    We know that in a square matrix if $${ a }_{ ij }={ a }_{ ji }$$ for all i and j, then the matrix is a symmetric matrix
    So A is a symmetric matrix
  • Question 9
    1 / -0
    If P = $$ \begin{bmatrix}
    1\\
    3\\

    4\end{bmatrix}$$ , Q = $$\begin{bmatrix}
    2 & -1&5
    \end{bmatrix}$$ then PQ = 
    Solution
    $$\text{PQ}=\begin{bmatrix} 1\\3\\4\end{bmatrix}\begin{bmatrix} 2&-1&5\end{bmatrix}$$
    $$\quad = \begin{bmatrix} 1\times 2&1\times(-1)&1\times 5\\3\times2&3\times(-1)&3\times 5 \\4\times 2&4\times(-1)&4\times 5\end{bmatrix}$$
    $$\quad = \begin{bmatrix} 2 & -1 & 5\\ 6& -3& 15\\ 8& -4 & 20 \end{bmatrix}$$
  • Question 10
    1 / -0
    $$\mathrm{A}$$: If $$\mathrm{A}=\left\{\begin{array}{ll}
    1 & -1\\
    -1 & 1
    \end{array}\right\} $$ and $$\mathrm{B}=\left\{\begin{array}{ll}
    2 & 2\\
    2 & 2
    \end{array}\right\},$$ then $$\mathrm{A}\mathrm{B}=0$$ 
    $$\mathrm{R}$$: If $$\mathrm{A}\mathrm{B}=0\Rightarrow  \mathrm{A}$$ or $$\mathrm{B}$$ need not be null matrices.
     The correct answer is 
    Solution
    If $$\mathrm{A}=\left\{\begin{array}{ll}
    1 & -1\\
    -1 & 1
    \end{array}\right\} ;\mathrm{B}=\left\{\begin{array}{ll}
    2 & 2\\
    2 & 2
    \end{array}\right\}$$
    Then,  $$\mathrm{AB}=\left\{\begin{array}{ll}
    1\times 2-1\times 2 & 1\times 2-1\times 2\\
    -1\times 2+1\times 2 & -1\times 2+1\times 2
    \end{array}\right\} =O$$
    Hence both statement are correct and Reason is correct explanation of Assertion.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now