Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\mathrm{A}=\left(\begin{array}{lll}
    x & 1 & 4\\
    -1 & 0 & 7\\
    -4 & -7 & 0
    \end{array}\right)$$ such that $$\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$$, then $$\mathrm{x}=$$

  • Question 2
    1 / -0

    $$\mathrm{If}\mathrm{A}=\left[\begin{array}{lll}
    2 & x-3 & x-2\\
    3 & -2 & -1\\
    4 & -1 & -5
    \end{array}\right]$$ is a symmetric matrix then $$\mathrm{x}$$

  • Question 3
    1 / -0

    $$A=\left[\begin{array}{ll}
    2 & 1\\
    3 & 0
    \end{array}\right]$$ then $$\mathrm{A}^{2}+2\mathrm{A}+I=$$

  • Question 4
    1 / -0

    $$A=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$  then $$A^{2}-A=$$

  • Question 5
    1 / -0

    $$\begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} x & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$ then $${x}=$$

  • Question 6
    1 / -0

    lf $$ \left[3x^{2}+10xy+5y^{2} \right]=\begin{bmatrix}x & y \end{bmatrix}A\begin{bmatrix} x\\ y\end{bmatrix}$$, and $${A}$$ is a symmetric matrix then $$\mathrm{A}=$$

  • Question 7
    1 / -0

    $$1\mathrm{f}\mathrm{A}=\left[\begin{array}{lll}
    4 & 1 & 0\\
    1 & -2 & 2
    \end{array}\right],\ \mathrm{B}=\left[\begin{array}{lll}
    2 & 0 & -1\\
    3 & 1 & 4
    \end{array}\right]$$, $$\mathrm{C}=\left[\begin{array}{l}
    1\\
    2\\
    -1
    \end{array}\right]$$ and $$(3\mathrm{B}-2\mathrm{A})\mathrm{C}+2\mathrm{X}=0$$ then $$\mathrm{X}$$ is equal to

  • Question 8
    1 / -0

    $$A=\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$ and $$\mathrm{A}^{2}=\lambda I$$ then $$\lambda=$$

  • Question 9
    1 / -0

    $$A=\left[\begin{array}{lll}
    2 & 2 & 1\\
    1 & 2 & 1\\
    3 & 4 & 2
    \end{array}\right]$$ then ($$\mathrm{A}-\mathrm{I}$$) $$(\mathrm{A}-2I)=$$

  • Question 10
    1 / -0

    lf  $$A=\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$ and $$ B=\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$ then 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now