Self Studies
Selfstudy
Selfstudy

Matrices Test - 26

Result Self Studies

Matrices Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\mathrm{A}=\left(\begin{array}{lll}
    x & 1 & 4\\
    -1 & 0 & 7\\
    -4 & -7 & 0
    \end{array}\right)$$ such that $$\mathrm{A}^{\mathrm{T}}=-\mathrm{A}$$, then $$\mathrm{x}=$$
    Solution
    Given $$A=\begin{pmatrix}
    x & 1 & 4\\
    -1 & 0 & 7\\
    -4 & -7 & 0
    \end{pmatrix}$$
    and $$A^{T}=-A$$
    So By property of traspose (I), and opertaion of matrixes (4),
    $$A^{T}=\begin{pmatrix}
    x & -1 & -4\\
    1 & 0 & -7\\
    4 & 7 & 0
    \end{pmatrix}=-A=\begin{pmatrix}
    -x & -1 & -4\\
    1 & 0 & -7\\
    4 & 7 & 0
    \end{pmatrix}$$
    So, By equality of matrixes,
    $$x=-x$$
    $$\Rightarrow x=0$$
  • Question 2
    1 / -0
    $$\mathrm{If}\mathrm{A}=\left[\begin{array}{lll}
    2 & x-3 & x-2\\
    3 & -2 & -1\\
    4 & -1 & -5
    \end{array}\right]$$ is a symmetric matrix then $$\mathrm{x}$$
    Solution
    Given $$A=\begin{bmatrix}
    2 & x-3 & x-2\\
    3 & -2 & -1\\
    4 & -1 & -5
    \end{bmatrix}$$ is a symmetric matrix.
    So, by property of symmetric matrices
    $$A=A^{T}$$
    $$\Rightarrow \begin{bmatrix}
    2 & x-3 & x-2\\
    3 & -2 & -1\\
    4 & -1 & -5
    \end{bmatrix}=\begin{bmatrix}
    2 & 3 & 4\\
    x-3 & -2 & -1\\
    x-2 & -1 & -5
    \end{bmatrix}$$
    So, By operation of matrices - equality,
    $$\Rightarrow x-3=3$$
    $$\Rightarrow x=6$$
  • Question 3
    1 / -0
    $$A=\left[\begin{array}{ll}
    2 & 1\\
    3 & 0
    \end{array}\right]$$ then $$\mathrm{A}^{2}+2\mathrm{A}+I=$$
    Solution
    $$A^2+2A+I=(A+I)^2$$

    Now, $$A+I=\begin{bmatrix}
    3 & 1\\
    3 & 1
    \end{bmatrix}$$

    $$(A+I)^2=A^2+2A+I=\begin{bmatrix}
    3 & 1\\
    3 & 1
    \end{bmatrix}\begin{bmatrix}
    3 & 1\\
    3 & 1
    \end{bmatrix}=\begin{bmatrix}
    12 & 4\\
    12 & 4
    \end{bmatrix}$$
  • Question 4
    1 / -0
    $$A=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$  then $$A^{2}-A=$$
    Solution
    $$A=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$ 

    $${ A }^{ 2 }=\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}=\begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix}$$

    Now, $${ A }^{ 2 }-A=\begin{bmatrix} 4 & 3 & 0 \\ -3 & 2 & -2 \\ 6 & 4 & 5 \end{bmatrix}-\begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & -1 \\ 3 & -1 & 1 \end{bmatrix}$$

    $$=\begin{bmatrix} 3 & 1 & -1 \\ -3 & 1 & -1 \\ 3 & 5 & 4 \end{bmatrix}$$


  • Question 5
    1 / -0
    $$\begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} x & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$ then $${x}=$$
    Solution
    Given, $$\begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 4 & 1 \end{bmatrix}\begin{bmatrix} x & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} x & 0 & 0 \\ 2x & 5 & 0 \\ 3x & 20 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix} 10 & 20 & 30 \\ 20 & 45 & 80 \\ 30 & 80 & 171 \end{bmatrix}=\begin{bmatrix} x & 2x & 3x \\ 2x & 4x+5 & 6x+20 \\ 3x & 6x+20 & 9x+81 \end{bmatrix}$$

    On comparing, we get $$x=10$$
  • Question 6
    1 / -0
    lf $$ \left[3x^{2}+10xy+5y^{2} \right]=\begin{bmatrix}x & y \end{bmatrix}A\begin{bmatrix} x\\ y\end{bmatrix}$$, and $${A}$$ is a symmetric matrix then $$\mathrm{A}=$$
    Solution
    Given $$\begin{bmatrix} 3{ x }^{ 2 }+10xy & +5{ y }^{ 2 } \end{bmatrix}=\begin{bmatrix} x & y \end{bmatrix}A\begin{bmatrix} x \\ y \end{bmatrix}$$

    We will check using options
    If option A is the matrix A, then consider RHS 
    $$\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3 & 10 \\ 10 & 5 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$$

    $$=\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3x+10y \\ 10x+5y \end{bmatrix}$$

    $$=\begin{bmatrix} 3{ x }^{ 2 }+20xy & +5{ y }^{ 2 } \end{bmatrix}$$
    which is not equal to given LHS

    Now, option B, so let $$A=\begin{bmatrix} 10 & 3 \\ 5 & 10 \end{bmatrix}$$
    $$\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 10 & 3 \\ 5 & 10 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$$

    $$=\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 10x+3y \\ 5x+10y \end{bmatrix}$$

    $$=\begin{bmatrix} 3{ x }^{ 2 }+8xy & +5{ y }^{ 2 } \end{bmatrix}$$
    which is not equal to given LHS

    Now, we will try option C
    Let $$A=\begin{bmatrix} 3 & -5 \\ -5 & 5 \end{bmatrix}$$

    $$\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3 & -5 \\ -5 & 5 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$$

    $$=\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3x-5y \\ -5x+5y \end{bmatrix}$$

    $$=\begin{bmatrix} 3{ x }^{ 2 }-10xy & +5{ y }^{ 2 } \end{bmatrix}$$
    which is not equal to given LHS

    Now, lastly we will try option D.
    Let $$A=\begin{bmatrix} 3 & 5 \\ 5 & 5 \end{bmatrix}$$

    $$\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3 & 5 \\ 5 & 5 \end{bmatrix}\begin{bmatrix} x \\ y \end{bmatrix}$$

    $$=\begin{bmatrix} x & y \end{bmatrix}\begin{bmatrix} 3x+5y \\ 5x+5y \end{bmatrix}$$

    $$=\begin{bmatrix} 3{ x }^{ 2 }+10xy & +5{ y }^{ 2 } \end{bmatrix}$$
    which is equal to given LHS

  • Question 7
    1 / -0
    $$1\mathrm{f}\mathrm{A}=\left[\begin{array}{lll}
    4 & 1 & 0\\
    1 & -2 & 2
    \end{array}\right],\ \mathrm{B}=\left[\begin{array}{lll}
    2 & 0 & -1\\
    3 & 1 & 4
    \end{array}\right]$$, $$\mathrm{C}=\left[\begin{array}{l}
    1\\
    2\\
    -1
    \end{array}\right]$$ and $$(3\mathrm{B}-2\mathrm{A})\mathrm{C}+2\mathrm{X}=0$$ then $$\mathrm{X}$$ is equal to
    Solution
    Given, $$ A =\begin{bmatrix} 4 & 1 & 0 \\ 1 & -2 & 2 \end{bmatrix},B=\begin{bmatrix} 2 & 0 & -1 \\ 3 & 1 & 4 \end{bmatrix},{ C }=\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$$

    Now, $$(3{ B }-2{ A }){ C }+2{  X}=0$$
    $$\Rightarrow \left( \begin{bmatrix} 6 & 0 & -3 \\ 9 & 3 & 12 \end{bmatrix}-\begin{bmatrix} 8 & 2 & 0 \\ 2 & -4 & 4 \end{bmatrix} \right) \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}+2X=0$$

    $$\begin{bmatrix} -2 & -2 & -3 \\ 7 & 7 & 8 \end{bmatrix}\begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}+2X=0$$

    $$\begin{bmatrix} -3 \\ 13 \end{bmatrix}+2X=0$$

    $$\Rightarrow 2X=\begin{bmatrix} 3 \\ -13 \end{bmatrix}$$

    $$\Rightarrow X=\displaystyle \frac{1}{2}\begin{bmatrix} 3 \\ -13 \end{bmatrix}$$
  • Question 8
    1 / -0
    $$A=\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$ and $$\mathrm{A}^{2}=\lambda I$$ then $$\lambda=$$
    Solution
    $$A=\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$

    $${ A }^{ 2 }=\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}\begin{bmatrix} 1 & -3 & -4 \\ -1 & 3 & 4 \\ 1 & -3 & -4 \end{bmatrix}$$

    $$=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

    But given $$ { A }^{ 2 }=\lambda I$$
    $$\Rightarrow \lambda=0$$
  • Question 9
    1 / -0
    $$A=\left[\begin{array}{lll}
    2 & 2 & 1\\
    1 & 2 & 1\\
    3 & 4 & 2
    \end{array}\right]$$ then ($$\mathrm{A}-\mathrm{I}$$) $$(\mathrm{A}-2I)=$$
    Solution
    $$A-I=\left[\begin{array}{}
    1 & 2 & 1\\
    1 & 1 & 1\\
    3 & 4 & 1
    \end{array}\right]$$
    $$A-2I=\left[\begin{array}{}
    0 & 2 & 1\\
    1 & 0 & 1\\
    3 & 4 & 0
    \end{array}\right]$$
    $$\therefore (A-I)(A-2I)=\left[\begin{array}{}
    1 & 2 & 1\\
    1 & 1 & 1\\
    3 & 4 & 1
    \end{array}\right]\left[\begin{array}{}
    0 & 2 & 1\\
    1 & 0 & 1\\
    3 & 4 & 0
    \end{array}\right]=\left[\begin{array}{}
    5 & 6 & 3\\
    4 & 6 & 2\\
    7 & 10 & 7
    \end{array}\right]$$
  • Question 10
    1 / -0
    lf  $$A=\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$ and $$ B=\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$ then 
    Solution
    Given, $$A=\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}, B=\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$

    $$AB=\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}$$

    $$=\begin{bmatrix} -3 & 1 & 0 \\ 4 & -2 & -1 \\ -5 & 1 & 1 \end{bmatrix}$$

    $$BA=\begin{bmatrix} 10 & -4 & -1 \\ -11 & 5 & 0 \\ 9 & -5 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 2 \\ 1 & 3 & 2 \end{bmatrix}$$

    $$=\begin{bmatrix} -3 & 1 & 0 \\ 4 & -2 & -1 \\ -5 & 1 & 1 \end{bmatrix}$$

    Hence, $$AB=BA$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now