Self Studies
Selfstudy
Selfstudy

Matrices Test - 29

Result Self Studies

Matrices Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\begin{bmatrix} x & 1 \\ 1 & 0 \end{bmatrix}$$ and $$  A^{2}=I$$, then $$x=$$
    Solution
    Given $$A=\begin{bmatrix}  x & 1\\ 1 &0\end{bmatrix}$$ 

    Also, $$A^2=I$$
    $$\Rightarrow \begin{bmatrix} x &1 \\1 & 0 \end{bmatrix} \begin{bmatrix} x & 1 \\ 1& 0\end{bmatrix}= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} x^2+1 & x \\ x & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0\\ 0 &1 \end{bmatrix}$$

    For the above two matrices to be equal each of the first matrix must be equal to the corresponding element of the second matrix.

    Therefore, $$x^2+1=1   ...(i)$$ and $$x=0...(ii)$$.

    From equation $$(i)$$ and equation $$(ii)$$ we get,
    $$x=0$$

    Hence, the correct option is $$(A)$$
  • Question 2
    1 / -0
    If $$[1\ 2\ 3] B = [3\ 4],$$ then order of the matrix $$B$$ is
    Solution
    Given, $$[1 \  2\   3] $$ $$B = [3  \ 4]$$
    or $${[1 \ 2\  3]}$$ $$_{1\times3}$$ $$B={[3\  4]}$$ $$_{1\times2}$$
    So, order of $$B $$ should be $$3\times2.$$
    Hence, option 'D' is correct.
  • Question 3
    1 / -0
    The inverse of the matrix $$\begin{bmatrix}2 & 1\\ 1 & 3\end{bmatrix}$$ is
    Solution
    Given, $$A=\begin{bmatrix}2 & 1\\ 1 & 3\end{bmatrix}$$ 
    $$|A|=5$$

    Now, $$adj A=C^{T}=\begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}^{ T }$$

    $$\Rightarrow adj A=\begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$$

    $$A^{-1}=\displaystyle \frac{1}{5}\begin{bmatrix} 3 & -1 \\ -1 & 2 \end{bmatrix}$$
  • Question 4
    1 / -0
    If $$A = \begin{bmatrix}1 & -2 & 3\\ -4 & 2 & 5\end{bmatrix}$$ and $$B = \begin{bmatrix}2 & 3\\ 4 & 5\\ 2 & 1\end{bmatrix}$$, then  the product  of AB and BA is
    Solution
    $$AB = \begin{bmatrix} 1& -2 & 3\\ -4 & 2 &

    5\end{bmatrix} \begin{bmatrix}2 &3 \\ 4 & 5\\ 2 &

    1\end{bmatrix}$$
    $$\begin{bmatrix}2 - 8 + 6 & 3 - 10 + 3\\ -8 + 8

    + 10 & -12 + 10 + 5\end{bmatrix}= \begin{bmatrix}0 & -4\\ 10

    & 3\end{bmatrix}$$
    $$BA = \begin{bmatrix}2 & 3\\ 4 & 5\\ 2

    & 1\end{bmatrix} \begin{bmatrix}1 & -2 & 3\\ -4 & 2

    & 5\end{bmatrix}$$
    $$\begin{bmatrix}2 - 12 & -4 + 6 & 6 +

    15\\ 4 - 20 & - 8 + 10 & 12 + 25\\ 2 - 4 & -4 + 2 & 6 +

    5\end{bmatrix}= \begin{bmatrix}-10 & 2 & 21\\ -16 & 2 &

    37\\ -2 & -2 & 11\end{bmatrix}$$

    Thus, order of AB is $$2\times2$$ and order of $$BA$$ is $$3\times3.$$
    So, the product AB and BA  can not be computed.
  • Question 5
    1 / -0
    Let A be a square matrix. Which of the following is/are not symmetric matrix/matrices?
    Solution
    We know a square matrix $$A$$ is called symmetric if $$A^T = A$$
    . Let $$P = A-A^T \Rightarrow P^T = (A-A^T)^T=A^T-A=-P\Rightarrow $$ This is not a symmetric matrix, it is skew symmetric matrix.
    All other matrices in the other option are symmetric.
  • Question 6
    1 / -0
    If $$A = \begin{bmatrix}1 & 2 & 2\\ 2 & 1 & -2\\ a & 2 & b\end{bmatrix}$$ is a matrix satisfying $$AA^T = 9 I_3$$, then the values of $$a$$ and $$b$$ are
    Solution
    We have,
    $$A = \begin{bmatrix}1 & 2 & 2\\ 2 & 1 &

    -2\\ a & 2 & b\end{bmatrix} \Rightarrow A^T = \begin{bmatrix}1

    & 2 & a\\ 2 & 1 & 2\\ 2 & -2 & b\end{bmatrix}$$

    $$\therefore AA^T = 9I_3$$

    $$\Rightarrow \begin{bmatrix}1

    & 2 & 2\\ 2 & 1 & -2\\ a & 2 &

    b\end{bmatrix} \begin{bmatrix}1 & 2 & a\\ 2 & 1 & 2\\ 2

    & -2 & b\end{bmatrix} = 9 \begin{bmatrix}1 & 0 & 0\\ 0

    & 1 & 0\\ 0 & 0 & 1\end{bmatrix}$$
    or

    $$\begin{bmatrix}9 & 0 & a+2b + 4\\ 0 & 9 & 2a + 2 -

    2b\\ a+2b +4 & 2a + 2 - 2b & a^2 + 4 + b^2\end{bmatrix}

    = \begin{bmatrix}9 & 0 & 0\\ 0 & 9 & 0\\ 0 & 0 &

    9\end{bmatrix}$$

    On comparing above matrices, we get
     $$a + 2b + 4 = 0, 2a + 2 - 2b = 0$$ and $$a^2 + 4 + b^2 = 9$$
    or $$a + 2b + 4 = 0, a - b + 1= 0$$ and $$a^2 + b^2 = 5$$
    Solving $$a + 2b + 4 =0$$ and $$a - b + 1 = 0$$, we get
    $$a = -2, b = -1$$. Clearly, these values satisfy $$a^2 + b^2 = 5$$.
    $$\therefore$$ $$a = - 2$$ and $$b = - 1$$.
  • Question 7
    1 / -0
    Using elementary transformation, find the inverse of the matrix $$A =\begin{bmatrix}a & b\\ c & \left ( \frac{1 + bc}{a} \right )\end{bmatrix}$$.
    Solution
    $$A = \begin{bmatrix}a & b\\ c & \left ( \frac{1 + bc}{a} \right ) \end{bmatrix}$$
    We

    write,  $$A = I.A$$
    $$\Rightarrow \begin{bmatrix}a & b\\ c & \left ( \frac{1 + bc}{a}

    \right ) \end{bmatrix} = \begin{bmatrix}1 & 0\\ 0 & 1

    \end{bmatrix}A$$
    $$\Rightarrow \begin{bmatrix}1 & \frac{b}{a}\\ c

    & \left ( \frac{1 + bc}{a} \right ) \end{bmatrix} =

    \begin{bmatrix}\frac{1}{a} & 0\\ 0 & 1 \end{bmatrix} A$$        

            $$\left ( R_1 \rightarrow \frac{R_1}{a} \right )$$
    or $$

    \begin{bmatrix}1 & \frac{b}{a}\\ 0 & \frac{1}{a} \end{bmatrix} =

    \begin{bmatrix} \frac{1}{a} &  0\\ \frac{-c}{a} &

    1\end{bmatrix} A$$             $$(R_2 \rightarrow R_2 - c R_1)$$
    or

    $$ \begin{bmatrix}1 & \frac{b}{a}\\ 0 & 1\end{bmatrix} =

    \begin{bmatrix}\frac{1}{a} & 0\\ -c & a\end{bmatrix}A $$        

      $$(R_2 \rightarrow aR_2)$$
    or $$\begin{bmatrix}1 & 0\\ 0 &

    1\end{bmatrix} = \begin{bmatrix} \frac{1 + bc}{a}& -b\\ -c &

    a\end{bmatrix} A$$                $$\left ( R_1 \rightarrow R_1 -

    \frac{b}{a} R_2 \right )$$
    $$\Rightarrow A^{-1} = \begin{bmatrix} \frac{1 + bc}{a}& - b\\ -c & a\end{bmatrix} $$
  • Question 8
    1 / -0
    The value of x is such that matrix product $$\begin{bmatrix}2 & 0 & 7\\ 0 & 1 & 0\\ 1 & -2 & 1\end{bmatrix} \begin{bmatrix}-x & 14x & 7x\\ 0 & 1 & 0\\ x & -4x & -2x\end{bmatrix}$$ equals an identity matrix. Then the value of 20x is
    Solution
    $$\begin{bmatrix}2 & 0 & 7\\ 0 & 1 & 0\\ 1 &

    -2 & 1\end{bmatrix} \begin{bmatrix}-x & 14x & 7x\\ 0 & 1

    & 0\\ x & -4x & -2x\end{bmatrix}$$
    $$=\begin{bmatrix}5x

    & 0 & 0\\ 0 & 1 & 0\\ 0 & 10x-2 &

    5x\end{bmatrix}= \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ 0

    & 0 & 1\end{bmatrix}$$ (given)
    Comparing elements we get,
    $$\Rightarrow \displaystyle 5x = 1, 10 x - 2 = 0, \therefore x = \frac{1}{5}$$

  • Question 9
    1 / -0
    Given $$A, B, C$$ are three matrices such that 
    $$A = \begin{bmatrix}x & y & z\end{bmatrix}$$, $$B = \begin{bmatrix} a  & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$$, $$C = \begin{bmatrix}x \\ y \\ z\end{bmatrix}.$$ Evaluate $$ABC$$.
    Solution
    $$A = \begin{bmatrix}x & y & z\end{bmatrix}$$, $$B = \begin{bmatrix} a  & h & g \\ h & b & f \\ g & f & c\end{bmatrix}$$, $$C = \begin{bmatrix}x \\ y \\ z\end{bmatrix}$$
    $$AB=\begin{bmatrix}ax+hy+gz & hx+by+z & gx+fy+cz\end{bmatrix}$$
    $$ABC=\begin{bmatrix}ax+hy+gz & hx+by+z & gx+fy+cz\end{bmatrix}\begin{bmatrix}x \\ y \\ z\end{bmatrix}$$
    $$=\begin{bmatrix}ax^2 + by^2 + cz^2 + 2hxy + 2gzx + 2fyz\end{bmatrix}$$
    Hence, option A.
  • Question 10
    1 / -0
    If $$A = \begin{bmatrix} 1 & -2 & 3 \\ -4 & 2 & 5 \end{bmatrix}$$ and $$B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \\ 2 & 1 \end{bmatrix}$$. Find $$AB$$ and show that $$AB \ne BA$$
    Solution
    Given, 
    $$A=\begin{bmatrix} 1\quad  & -2\quad  & 3 \\ -4 & 2 & 5 \end{bmatrix},B=\begin{bmatrix} 2\quad  & 3 \\ 4\quad  & 5 \\ 2\quad  & 1 \end{bmatrix}\\ AB=\begin{bmatrix} 1\quad  & -2\quad  & 3 \\ -4 & 2 & 5 \end{bmatrix}\begin{bmatrix} 2\quad  & 3 \\ 4\quad  & 5 \\ 2\quad  & 1 \end{bmatrix}=\begin{bmatrix} 2-8+6\quad  & 3-10+3 \\ -8+8+10\quad  & -12+10+5 \end{bmatrix}=\begin{bmatrix} 0\quad  & -4 \\ 10\quad  & 3 \end{bmatrix}\\ BA=\begin{bmatrix} 2\quad  & 3 \\ 4\quad  & 5 \\ 2\quad  & 1 \end{bmatrix}\begin{bmatrix} 1\quad  & -2\quad  & 3 \\ -4 & 2 & 5 \end{bmatrix}=\begin{vmatrix} 2-12\quad  & -4+6\quad  & 6+15 \\ 4-20 & -8+10\quad  & 12+25 \\ 2-4 & -4+2 & -6+5 \end{vmatrix}\begin{bmatrix} -10\quad  & 2\quad  & 21 \\ -16 & 2 & 37 \\ -2 & -2 & -1 \end{bmatrix}$$
    Hence $$ AB\neq BA$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now