Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$\displaystyle A=\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix},$$ then $${A}^{50}$$ is

  • Question 2
    1 / -0

    If $$\displaystyle \left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}\: \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O$$ then $$x$$ is

  • Question 3
    1 / -0

    If $$\displaystyle \begin{bmatrix} 2 & -3 \\ 1 & \lambda \end{bmatrix} \times  \begin{bmatrix} 1 & 5 & \mu \\ 0 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$ then

  • Question 4
    1 / -0

    If $$\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$$ then $$AB$$ is equal to

  • Question 5
    1 / -0

    If the matrix $$\displaystyle A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ then $$\displaystyle A^2$$ is

  • Question 6
    1 / -0

    If $$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix},$$ $$B = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$ and $$A+B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & k & 8 \end{bmatrix},\\ $$ then find the value of $$k .$$

  • Question 7
    1 / -0

    If $$\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$ then $$\displaystyle A^2$$ is equal to

  • Question 8
    1 / -0

    If $$A$$ be a matrix such that $$\displaystyle A \times  \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$ then $$A$$ is

  • Question 9
    1 / -0

    If $$\displaystyle \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \: \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$ then $$x-y$$ is equal to

  • Question 10
    1 / -0

    If $$A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$

    If  $$A^2 - 4A =pI $$ where $$I$$ and $$O$$ are the unit matrix and the null matrix of order $$3$$ respectively. Find the value of $$p$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now