Self Studies
Selfstudy
Selfstudy

Matrices Test - 30

Result Self Studies

Matrices Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A=\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix},$$ then $${A}^{50}$$ is
    Solution
    $$\displaystyle A=\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix}$$
    $$\displaystyle{ A }^{ 2 }=\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ \cfrac { 1 }{ 2 }  & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 2\left( \cfrac { 1 }{ 2 }  \right)  & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$$
    $${ A }^{ 4 }=\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\\ { A }^{ 8 }=\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 4 & 1 \end{bmatrix}$$
    Similarly $$\displaystyle{ A }^{ n }=\begin{bmatrix} 1 & 0 \\ \cfrac { n }{ 2 }  & 1 \end{bmatrix}$$ for even $$n$$
    $$\Rightarrow { A }^{ 50 }=\begin{bmatrix} 1 & 0 \\ 25 & 1 \end{bmatrix}$$
  • Question 2
    1 / -0
    If $$\displaystyle \left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}\: \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O$$ then $$x$$ is
    Solution
    $$\displaystyle \left[ \begin{matrix} 1 & x & 1 \end{matrix} \right] \begin{bmatrix} 1 & 3 & 2 \\ 2 & 5 & 1 \\ 15 & 3 & 2 \end{bmatrix}\: \begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O$$
    $$\Rightarrow \begin{bmatrix} 16+2x & \quad 6+5x & \quad 4+x \end{bmatrix}\begin{bmatrix} 1 \\ 2 \\ x \end{bmatrix}=O\\ \Rightarrow { x }^{ 2 }+16x+28\quad =\quad 0\\ \therefore \quad x=-2\quad or\quad x=-4$$


  • Question 3
    1 / -0
    If $$\displaystyle \begin{bmatrix} 2 & -3 \\ 1 & \lambda \end{bmatrix} \times  \begin{bmatrix} 1 & 5 & \mu \\ 0 & 2 & -3 \end{bmatrix} = \begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$ then

    Solution
    Since, $$\begin{bmatrix} 2 & -3 \\ 1 & \lambda  \end{bmatrix}\times \begin{bmatrix} 1 & 5 & \mu  \\ 0 & 2 & -3 \end{bmatrix}=\begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix} 2-0 & 10-6 & 2\mu +9 \\ 1+0 & 5+2\lambda  & \mu -3\lambda  \end{bmatrix}=\begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$

    $$\Rightarrow \begin{bmatrix} 2 & 4 & 2\mu +9 \\ 1 & 5+2\lambda  & \mu -3\lambda  \end{bmatrix}=\begin{bmatrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{bmatrix}$$

    $$\Rightarrow 2\mu +9=1$$ and $$5+2\lambda =-1$$
    $$\Rightarrow \mu =-4,\lambda =-3$$
    But these value does not satisfy $$\mu -3\lambda =13$$
  • Question 4
    1 / -0
    If $$\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$$ then $$AB$$ is equal to
    Solution
    $$\displaystyle A = \begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}$$ and $$\displaystyle B = \begin{bmatrix} a^2 & ab & ac \\ ba & b^2 & bc \\ ca & cb & c^2 \end{bmatrix}$$

    Now, $$AB=\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix}\begin{bmatrix} a^{ 2 } & ab & ac \\ ba & b^{ 2 } & bc \\ ca & cb & c^{ 2 } \end{bmatrix}$$

    $$\Rightarrow AB=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$


  • Question 5
    1 / -0
    If the matrix $$\displaystyle A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ then $$\displaystyle A^2$$ is
    Solution
    Given $$\displaystyle A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$ 

    $$A^{2}=\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

    $$=\displaystyle \begin{bmatrix} a^2 + bc & ab + bd \\ ac + dc & bc + d^2 \end{bmatrix}$$
  • Question 6
    1 / -0
    If $$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 & 7 \end{bmatrix},$$ $$B = \begin{bmatrix} 1 & 3 & 7 \\ 2 & 4 & 1 \end{bmatrix}$$ and $$A+B = \begin{bmatrix} 1 & 5 & 10 \\ 5 & k & 8 \end{bmatrix},\\ $$ then find the value of $$k .$$
    Solution
    Given $$A = \begin{bmatrix} 0 & 2 & 3 \\ 3 & 5 &

    7 \end{bmatrix}$$ and $$B = \begin{bmatrix} 1 & 3 & 7 \\ 2 &

    4 & 1 \end{bmatrix}$$

    $$\therefore A+B = \mbox{sum of respective elements of A and B}=\begin{bmatrix} 1 & 5

    & 10 \\ 5 & 9 & 8 \end{bmatrix} $$

    Hence the value of $$k$$ is $$9$$
  • Question 7
    1 / -0
    If $$\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$ then $$\displaystyle A^2$$ is equal to
    Solution
    Given, $$\displaystyle A = \begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}$$

    $$A^{ 2 }=\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}\begin{bmatrix} 4 & -1 & -4 \\ 3 & 0 & -4 \\ 3 & -1 & -3 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$\Rightarrow A^{2}=I$$
  • Question 8
    1 / -0
    If $$A$$ be a matrix such that $$\displaystyle A \times  \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$ then $$A$$ is
    Solution
    $$\displaystyle A \times  \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

    We will check using options
    Option A
    Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
             $$=\begin{bmatrix} 2 & 4 \\ 1 & -1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$

        $$=\begin{bmatrix} 6 & 12 \\ 0 & -6 \end{bmatrix}$$
        $$\ne RHS$$

    Hence, option $$A$$ cannot be matrix $$A$$.

    Option B, 
    Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$
            $$\begin{bmatrix} -1 & 1 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$

          $$=\begin{bmatrix} 0 & 6 \\ 6 & 0 \end{bmatrix}$$

            $$\ne RHS$$
    Hence, option $$B$$ cannot be matrix $$A$$.

    Option C,
    Consider, $$A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$

             $$=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$$

           $$=\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$

          $$= RHS$$
    Hence, option C is correct for $$A$$.


  • Question 9
    1 / -0
    If $$\displaystyle \begin{bmatrix} x+y & y \\ 2x & x-y \end{bmatrix} \: \begin{bmatrix} 2 \\ -2 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$ then $$x-y$$ is equal to
    Solution
    Comparing LHS and RHS gives us 
    $$2x+2y-2y=3$$ ...(i)
    And 
    $$4x-2x+2y=2$$ ...(ii)
    from i
    $$2x=3$$ and from ii
    $$2x+2y=2$$
    Therefore 
    $$3+2y=3$$
    $$y=\dfrac{-1}{2}$$ and $$x=\dfrac{3}{2}$$
    Hence 
    $$x-y=\dfrac{3}{2}-(\dfrac{-1}{2})$$
    $$=\dfrac{4}{2}$$
    $$=2$$.
  • Question 10
    1 / -0
    If $$A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$

    If  $$A^2 - 4A =pI $$ where $$I$$ and $$O$$ are the unit matrix and the null matrix of order $$3$$ respectively. Find the value of $$p$$
    Solution
    Given

    $$\quad A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$

    $$\therefore

    A^2 = A.A = \begin{pmatrix}1& 2 & 2 \\ 2 & 1 & 2 \\ 2

    & 2 & 1\end{pmatrix}\times\begin{pmatrix}1& 2 & 2 \\ 2

    & 1 & 2 \\ 2 & 2 & 1\end{pmatrix}$$

    $$\quad      

                                = \begin{pmatrix}1+4+4 & 2+2+4 &

    2+4+2 \\ 2+2+4 & 4+1+4 & 4+2+2 \\ 2+4+2 & 4+2+2 &

    4+4+1 \end{pmatrix}$$ 

    $$\quad                                

      = \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8

    & 9\end{pmatrix}$$

    $$\therefore \quad A^2 - 4A 

    = \begin{pmatrix}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8

    & 9\end{pmatrix} - 4\begin{pmatrix}1& 2 & 2 \\ 2 & 1

    & 2 \\ 2 & 2 & 1\end{pmatrix}$$

    $$\quad                              

                           = \begin{pmatrix}9&8&8 \\ 8&9&8

    \\ 8&8&9\end{pmatrix} - \begin{pmatrix}4&8&8 \\

    8&4&4 \\ 4&4&8\end{pmatrix} =

    \begin{pmatrix}5&0&0 \\ 0&5&0 \\

    0&0&5\end{pmatrix}=5I$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now