Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$, then $$A^2$$ is equal

  • Question 2
    1 / -0

    If $$\displaystyle A=\begin{bmatrix} 1 & \frac { 1 }{ 2 }  \\ 0 & 1 \end{bmatrix}$$ then $${ A }^{ 64 }$$ is

  • Question 3
    1 / -0

    Find the value of $$x$$ and $$y$$ that satisfy the equation:
    $$\begin{bmatrix} 3&-2 \\3  &0 \\2 &4 \end{bmatrix}
    \begin{bmatrix} y&y \\x &x \end{bmatrix}=\begin{bmatrix} 3&3 \\3y  &3y \\10 &10 \end{bmatrix}$$

  • Question 4
    1 / -0

    Let $$A$$ be square matrix. Then which of the following is not a symmetric matrix.

  • Question 5
    1 / -0

    If A is any square matrix then (1/2) $$\displaystyle \left ( A+A^{T} \right )$$ is a _____ matrix

  • Question 6
    1 / -0

    If $$A=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$, then $$(A-2I)(A-3I)=$$ 

  • Question 7
    1 / -0

    Inverse of a diagonal matrix is

  • Question 8
    1 / -0

    If $$A+I=\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$$, then $$\left( A+I \right) \cdot \left( A-I \right) $$ is equal to

  • Question 9
    1 / -0

    Two matrices $$A$$ and $$B$$ are multiplied to get $$AB$$ if

  • Question 10
    1 / -0

    If $$A=\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$, then $${ A }^{ 2 }$$ is equal to

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now