Self Studies
Selfstudy
Selfstudy

Matrices Test - 32

Result Self Studies

Matrices Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$, then $$A^2$$ is equal
    Solution
    $$A =\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$
    $$A^2=\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}\begin{bmatrix} ab&b^2 \\-a^2 &-ab \end{bmatrix}$$
    $$=\begin{bmatrix} a^{ 2 }b^{ 2 }-a^{ 2 }b^{ 2 } & ab^{ 3 }-ab^{ 3 } \\ -a^{ 3 }b+a^{ 3 }b & -a^{ 2 }b^{ 2 }+a^{ 2 }b^{ 2 } \end{bmatrix}=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
    $$\therefore  A^2=\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} =O$$
    Hence, option A.

  • Question 2
    1 / -0
    If $$\displaystyle A=\begin{bmatrix} 1 & \frac { 1 }{ 2 }  \\ 0 & 1 \end{bmatrix}$$ then $${ A }^{ 64 }$$ is
    Solution
    $$\displaystyle { A }^{ 2 }=\begin{bmatrix} 1 & \frac { 1 }{ 2 }  \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & \frac { 1 }{ 2 }  \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 4 }=\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\\ { A }^{ 8 }=\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}=\begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix}$$
    Similarly, $${ A }^{ 64 }=\begin{bmatrix} 1 & 32 \\ 0 & 1 \end{bmatrix}$$
  • Question 3
    1 / -0
    Find the value of $$x$$ and $$y$$ that satisfy the equation:
    $$\begin{bmatrix} 3&-2 \\3  &0 \\2 &4 \end{bmatrix}
    \begin{bmatrix} y&y \\x &x \end{bmatrix}=\begin{bmatrix} 3&3 \\3y  &3y \\10 &10 \end{bmatrix}$$
    Solution
    $$\left[ \begin{matrix} 3\quad  & -2 \\ 3 & \quad 0 \\ 2 & \quad 4 \end{matrix} \right] \begin{bmatrix} y\quad  & y \\ x\quad  & x \end{bmatrix}=\left[ \begin{matrix} 3\quad  & 3 \\ 3y\quad  & 3y \\ 10\quad  & 10 \end{matrix} \right] \\ \Rightarrow \left[ \begin{matrix} 3y-2x\quad  & 3y-2x \\ 3y\quad  & 3y \\ 2y+4x\quad  & 2y+4x \end{matrix} \right] =\left[ \begin{matrix} 3 & \quad 3 \\ 3y\quad  & 3y \\ 10\quad  & 10 \end{matrix} \right] $$
    $$\therefore 3y-2x=3$$ and $$2y+4x=10$$
    $$\displaystyle \Rightarrow x=\frac { 3 }{ 2 } ,y=2$$
  • Question 4
    1 / -0
    Let $$A$$ be square matrix. Then which of the following is not a symmetric matrix.
    Solution
    If $$A$$ is a square matrix, then and if $$A'$$ represents its transpose, then
    $$A+A'$$ is symmetric and $$A-A'$$ is skew symmetric.
    Hence matrix A can be written as
    $$A=(\dfrac{A+A'}{2})+(\dfrac{A-A'}{2})$$

    Therefore of all the above matrix,
    $$A-A'$$ is not symmetric.
  • Question 5
    1 / -0
    If A is any square matrix then (1/2) $$\displaystyle \left ( A+A^{T} \right )$$ is a _____ matrix
    Solution
    Given $$\cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right) $$
    Let $$A+{ A }^{ T }=P$$
    Then $${ P }^{ T }={ \left( A+{ A }^{ T } \right)  }^{ T }=A+{ A }^{ T }=P$$
    $$\because { P }^{ T }=P$$
    $$\Rightarrow { \left( A+{ A }^{ T } \right)  }^{ T }=A+{ A }^{ T }$$
    $$\Rightarrow \cfrac { 1 }{ 2 } \left( A+{ A }^{ T } \right) $$is symmetric
    OPTION A
  • Question 6
    1 / -0
    If $$A=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$, then $$(A-2I)(A-3I)=$$ 
    Solution
    $$A=\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$$
    $$\Rightarrow$$ $$(A-2I)(A-3I)={A}^{2}-5AI+6{I}^{2}$$
    $${A}^{2}-5A+6I$$
    by Hemilton rule $$\begin{vmatrix} 4-\lambda  & 2 \\ -1 & 1-\lambda  \end{vmatrix}=0$$
    after expanding determinant we got;
    $$\Rightarrow 4-5\lambda +{ \lambda  }^{ 2 }+2=0$$
    $$\Rightarrow { \lambda  }^{ 2 }-5\lambda +6=0$$
    $$\Rightarrow { A }^{ 2 }-5A+6I=0$$
    Ans: 0
    Or 
    It can be done using scalar multiplication and followed by matrix multiplication. 
  • Question 7
    1 / -0
    Inverse of a diagonal matrix is
    Solution
    Consider a diagonal
    $$\begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
    Minor of the matrix
    $$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
    Co factor of matrix
    $$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix} + & - & + \\ - & + & - \\ + & - & + \end{bmatrix}$$
    $$\begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
    Adjoint of matrix$$=$$ Transpose of co factor$$=\begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
    Set of matrix considered$$=6$$
    $${ A }^{ -1 }=\cfrac { Adjoint\quad (A) }{ det(A) } $$
    $$=\cfrac { 1 }{ 6 } \begin{bmatrix} 4 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$
    Clearly $${ A }^{ -1 }$$ is also diagonal matrix
    $$\therefore $$ Inverse of a diagonal matrix is a diagonal matrix
    Option C is correct
  • Question 8
    1 / -0
    If $$A+I=\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$$, then $$\left( A+I \right) \cdot \left( A-I \right) $$ is equal to
    Solution
    Given, $$A+I=\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$$
    $$\therefore A-I=A+I-2I$$
        $$=\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}-\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$
        $$=\begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix}$$
    $$\therefore \left( A+I \right) \cdot \left( A-I \right) =\begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}\begin{bmatrix} 1 & -2 \\ 4 & -1 \end{bmatrix}$$
                   $$=\begin{bmatrix} 3-8 & -6+2 \\ 4+4 & -8-1 \end{bmatrix}$$
                   $$=\begin{bmatrix} -5 & -4 \\ 8 & -9 \end{bmatrix}$$
  • Question 9
    1 / -0
    Two matrices $$A$$ and $$B$$ are multiplied to get $$AB$$ if
    Solution
    According to condition of multiplication of two matrices:
    The columns in first matrix should be same in number as the rows in the second matrix [For $$AB$$ to be defined, we must have columns in $$A=$$ rows in $$B$$]
    Hence option C is true.
  • Question 10
    1 / -0
    If $$A=\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$, then $${ A }^{ 2 }$$ is equal to
    Solution
    Given, $$A=\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$
    $$\therefore { A }^{ 2 }=\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}$$
    $$=\begin{bmatrix} 4+2-4 & -2-3+4 & 2+2-3 \\ -4-6+8 & 2+9-8 & -2-6+6 \\ -8-8+12 & 4+12-12 & -4-8+9 \end{bmatrix}$$
    $$=\begin{bmatrix} 2 & -1 & 1 \\ -2 & 3 & -2 \\ -4 & 4 & -3 \end{bmatrix}=A$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now