Self Studies
Selfstudy
Selfstudy

Matrices Test - 33

Result Self Studies

Matrices Test - 33
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$\displaystyle A=\left[ \begin{matrix} 2 \\ 0 \\ 0 \end{matrix}\,\,\,\begin{matrix} 0 \\ 2 \\ 0 \end{matrix}\,\,\,\begin{matrix} 0 \\ 0 \\ 2 \end{matrix} \right] $$ then $$\displaystyle { A }^{ 5 }=$$
    Solution
    Given, $$A= \displaystyle \left[\begin{matrix} 2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{matrix}  \right]$$
         $$\Rightarrow A= \displaystyle 2\left[\begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{matrix}  \right]$$
         $$\Rightarrow A= \displaystyle 2I$$
         $$\Rightarrow A^5= \displaystyle 2^5I^5$$
         $$\Rightarrow A^5= \displaystyle 2^5I$$
         $$\Rightarrow A^5= \displaystyle 2^4.2I$$
         $$\Rightarrow A^5= \displaystyle 2^4. \displaystyle 2\left[\begin{matrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{matrix}  \right]$$
         $$\Rightarrow A^5= \displaystyle 16\displaystyle \left[\begin{matrix} 2 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 2 \end{matrix}  \right]$$.
        $$\Rightarrow A^5= \displaystyle 16A $$
    Option $$C$$ is correct.
  • Question 2
    1 / -0
    If $$A$$ and $$B$$ are symmetric matrices, then $$ABA$$ is
    Solution
    Given $$A$$ and $$B$$ are symmetric matrices.
    $$\Rightarrow A^T = A$$ and $$B^T = B$$

    Now, take $$(ABA)^T$$
    $$\Rightarrow (ABA)^T = A^T B^T A^T$$
    $$\Rightarrow (ABA)^T = ABA$$
    Hence, $$ABA$$ is also a symmetric matrix.
  • Question 3
    1 / -0
    If $$A=\begin{bmatrix}1 & 1\\ 1& 1\end{bmatrix}$$, then $$A^{100}$$ is equal to.
    Solution
    Given, $$A=\begin{bmatrix}1&1\\1&1\end{bmatrix}$$
    $$\therefore A^2=A\cdot A=\begin{bmatrix}1&1\\1&1\end{bmatrix}\begin{bmatrix}1&1\\1&1\end{bmatrix}$$
    $$=2\begin{bmatrix}1&1\\1&1\end{bmatrix}=2A$$
    Now, $$A^4=A^2\cdot A^2=2A\cdot 2A$$
    $$=4A^2=4\times 2A$$
    $$=8A=2^3A$$
    Similarly, $$A^8=2^7A$$
    $$\therefore A^{100}=2^{99}A$$
  • Question 4
    1 / -0
    If $$\displaystyle A=\begin{bmatrix} 0 & 0 & 1\\ 0 & 1&0 \\ 1& 0 & 0\end{bmatrix}$$, then $$A^{-1}$$ is.
    Solution
    We have, $$A=\begin{bmatrix} 0 & 0&1\\ 0 &1 &0\\ 1&0 &0\end{bmatrix}$$
    $$\Rightarrow |A|=0(0-0)-0(0-0)+1(0-1)$$
    $$\Rightarrow |A|=-1$$
    and cofactors of A are
    $$A_{11}=0, A_{12}=0, A_{13}=-1,$$
    $$A_{21}=0, A_{22}=-1, A_{23}=0,$$
    $$A_{31}=-1, A_{32}=0, A_{33}=0$$
    $$\therefore A^{-1}=\displaystyle\frac{adj(A)}{|A|}$$
    $$=-\displaystyle\frac{1}{1}\begin{bmatrix} 0 & 0 & -1\\0 & -1 &0\\ -1 &0 &0\end{bmatrix}$$
  • Question 5
    1 / -0
    If $$A=\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$, then $$A^2 - 5A$$ is equal to 
    Solution
    $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} ,$$ 
    Also, $$A^{2} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 1\times1+2\times 3\,\,\,\,\,1\times 2+2\times 4 \\ 3\times 1+4\times 3\,\,\,\,\,3\times2+4\times 4 \end{bmatrix} $$
    $$ \Rightarrow A^{2} = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix} $$
    $$ 5A = 5\times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix} $$
    $$ A^{2} -5A = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}-\begin{bmatrix} 5 & 10 \\ 15 & 20 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & +2 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$
    $$ \therefore A^{2}-5A = 2I $$ 
  • Question 6
    1 / -0
    If $$\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$, then $${A}^{-1}$$ is equal to
    Solution
    Since $$A=\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$$

    $$\therefore \left| A \right| =\begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}=-5-6=-11$$

    and $$adj(A)=\begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}$$

    $$\therefore { A }^{ -1 }=\cfrac { 1 }{ \left| A \right|  } adj(A)$$

    $$=-\cfrac { 1 }{ 11 } \begin{bmatrix} -5 & -2 \\ -3 & 1 \end{bmatrix}=\cfrac { 1 }{ 11 } \begin{bmatrix} 5 & 2 \\ 3 & -1 \end{bmatrix}$$

    $$\quad =\begin{bmatrix} \cfrac { 5 }{ 11 }  & \cfrac { 2 }{ 11 }  \\ \cfrac { 3 }{ 11 }  & -\cfrac { 1 }{ 11 }  \end{bmatrix}$$
  • Question 7
    1 / -0
    Inverse of the matrix $$\begin{bmatrix} \cos 2\theta & -\sin 2\theta\\ \sin 2\theta & \cos 2\theta\end{bmatrix}$$ is.
    Solution
    Let $$A=\begin{bmatrix} \cos 2\theta & -\sin 2\theta\\ \sin 2\theta & \cos 2\theta\end{bmatrix}$$
    $$\therefore |A|=\cos^2 2\theta+\sin^2 2\theta=1$$
    and $$adj(A)=\begin{bmatrix}\cos 2\theta &\sin 2\theta\\ -\sin 2\theta & \cos 2\theta\end{bmatrix}$$
    $$\therefore A^{-1}=\displaystyle\frac{1}{1}\begin{bmatrix}\cos 2\theta & \sin 2\theta\\ -\sin 2\theta &\cos 2\theta\end{bmatrix}$$
    $$=\begin{bmatrix}\cos 2\theta & \sin 2\theta\\ -\sin 2\theta & \cos 2\theta\end{bmatrix}$$
  • Question 8
    1 / -0
    Let $$A=\begin{bmatrix} 1 & -1 & -1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$ and $$10B=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}$$, if $$B$$ is the inverse of matrix $$A$$, then $$\alpha $$ is
    Solution
    Since, $$B$$ is the inverse of $$A$$.
    ie, $$B=10{ A }^{ -1 }$$
    $$\therefore \left( 10 \right) { A }^{ -1 }=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}$$
    $$\therefore \left( 10 \right) { A }^{ -1 }\cdot A=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}A$$
    $$\Rightarrow 10I=\begin{bmatrix} 4 & 2 & 2 \\ -5 & 0 & \alpha  \\ 1 & -2 & 3 \end{bmatrix}\begin{bmatrix} 1 & -1 & 1 \\ 2 & 1 & -3 \\ 1 & 1 & 1 \end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 10 & 0 & 0 \\ 0 & 10 & 0 \\ 0 & 0 & 10 \end{bmatrix}=\begin{bmatrix} 10 & 0 & 0 \\ -5+\alpha  & 5+\alpha  & -5+\alpha  \\ 0 & 0 & 10 \end{bmatrix}$$
    $$\Rightarrow 5+\alpha =10$$
    $$\Rightarrow \alpha =5$$
  • Question 9
    1 / -0
    If $$\begin{bmatrix}1 & 1 &1\\ 1&-2 &-2\\1 & 3 &1\end{bmatrix}$$ $$\begin{bmatrix} x\\ y\\z\end{bmatrix}=\begin{bmatrix} 0 \\ 3\\4\end{bmatrix}$$, then $$\begin{bmatrix} x\\ y\\z\end{bmatrix}$$ is equal to.
    Solution
    Given, $$\begin{bmatrix} 1&1&1\\1&-2&-2\\1&2&1\end{bmatrix}\begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}0\\3\\4\end{bmatrix}$$
    $$\therefore x+y+z=0$$,
    $$x-2y-2z=3$$,
    $$x+3y=z=4$$
    On solving these equations, we get
    $$x=1, y=2$$ and $$z=-3$$
    $$\therefore \begin{bmatrix}x\\y\\z\end{bmatrix}=\begin{bmatrix}1\\2\\-3\end{bmatrix}$$
  • Question 10
    1 / -0
    If $$A=\begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$ and $$B=\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$$, then $${ \left( AB \right)  }^{ T }$$ is equal to
    Solution
    Given, $$A=\begin{bmatrix} 1 & -2 & 1 \\ 2 & 1 & 3 \end{bmatrix},B=\begin{bmatrix} 2 & 1 \\ 3 & 2 \\ 1 & 1 \end{bmatrix}$$
    $$\therefore AB=\begin{bmatrix} 2-6+1 & 1-4+1 \\ 4+3+3 & 2+2+3 \end{bmatrix}=\begin{bmatrix} -3 & -2 \\ 10 & 7 \end{bmatrix}$$
    Now, $${ \left( AB \right)  }^{ T }=\begin{bmatrix} -3 & 10 \\ -2 & 7 \end{bmatrix}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now