Self Studies
Selfstudy
Selfstudy

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    The symmetric part of the matrix A= $$\begin{bmatrix}
    1 &2  &4 \\
    6 & 8 & 2\\
    2 & -2 &7
    \end{bmatrix}$$.

  • Question 2
    1 / -0

    For a matrix $$A \begin{pmatrix} 1& 0 & 0\\ 2 & 1 & 0\\ 3 & 2 & 1\end{pmatrix}$$, if $$U_{1}, U_{2}$$ and $$U_{3}$$ are $$3\times 1$$ column matrices satisfying $$AU_{1} = \begin{pmatrix}1\\ 0 \\ 0
    \end{pmatrix}, AU_{2} \begin{pmatrix}2\\3 \\ 0
    \end{pmatrix}, AU_{3} = \begin{pmatrix}2\\ 3\\ 1
    \end{pmatrix}$$ and $$U$$ is $$3\times 3$$ matrix whose columns are $$U_{1}, U_{2}$$ and $$U_{3}$$
    Then sum of the elements of $$U^{-1}$$ is

  • Question 3
    1 / -0

    If $$A$$ is a scalar matrix $$kI$$ with scalar $$k\ne 0$$ of order $$3$$, the $${A}^{-1}$$ is:

  • Question 4
    1 / -0

    If $$A = \begin{bmatrix} 4& -2\\ 6 & -3\end{bmatrix}$$, then $$A^2$$ is

  • Question 5
    1 / -0

    If $$\bigl(\begin{smallmatrix} 1& 2\\ 2 & 1\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix} x \\ y \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} 2 \\  4 \end{smallmatrix}\bigr)$$, then the values of $$x$$ and $$y$$ respectively, are

  • Question 6
    1 / -0

    If $$A = \bigl(\begin{smallmatrix} 4& -2\\ 6 & -3\end{smallmatrix}\bigr)$$, then $$A^2$$ is

  • Question 7
    1 / -0

    If $$A \times \bigl(\begin{smallmatrix} 1& 1\\0  & 2\end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix}1 & 2 \end{smallmatrix}\bigr)$$, then the order of A is

  • Question 8
    1 / -0

    $$\bigl(\begin{smallmatrix} -1& 0\\ 0 & 1\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix}a & b\\ c & d\end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} 1& 0\\ 0 & -1\end{smallmatrix}\bigr)$$, then the values of $$a, b, c $$ and $$d $$ respectively are

  • Question 9
    1 / -0

    If $$\bigl(\begin{smallmatrix}a & 3\\ 1 & 2\end{smallmatrix}\bigr) \bigl(\begin{smallmatrix} 2 \\ -1 \end{smallmatrix}\bigr) = \bigl(\begin{smallmatrix} 5\\ 0 \end{smallmatrix}\bigr)$$, then the value of $$a$$ is

  • Question 10
    1 / -0

    If $$A=\left[ \begin{matrix} 1 & -2 & 3 \end{matrix} \right] $$ and $$B=\left[ \begin{matrix} -1 \\ 2 \\ -3 \end{matrix} \right] $$, then $$A + B$$ is

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now