Self Studies
Selfstudy
Selfstudy

Matrices Test - 39

Result Self Studies

Matrices Test - 39
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The  matrix equation satisfied by $$A$$ is ______$$, $$ if $$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}.$$ 
    Solution
    Consider the given matrix,

    $$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

    Consider, $$A^2-4A-5I$$

    $$=\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}-4\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}-5\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

    $$=\begin{bmatrix} 9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9 \end{bmatrix}-\begin{bmatrix} 4 & 8 & 8 \\ 8 & 4 & 8 \\ 8 & 8 & 4 \end{bmatrix}-\begin{bmatrix} 5 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

    $$=\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

    $$=0$$
  • Question 2
    1 / -0
    If $$A = \begin{bmatrix}3&-3&4\\2&-3&4\\0&-1&1\end{bmatrix}$$ and $$B = \begin{bmatrix}3&1&2\\2&0&5\\1&2&0\end{bmatrix}$$, find $$AB$$.
    Solution
    $$A=\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}\quad B=\begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 1 & 2 & 0 \end{bmatrix}\\ AB=\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}\times \begin{bmatrix} 3 & 1 & 2 \\ 2 & 0 & 5 \\ 1 & 2 & 0 \end{bmatrix}\\ \quad =\begin{bmatrix} 9-6+4 & 3+0+8 & 6-15+0 \\ 6-6+4 & 2+0+8 & 4-15+0 \\ 0-2+1 & 0+0+2 & 0-5+0 \end{bmatrix}\\ \quad =\begin{bmatrix} 7 & 11 & -9 \\ 4 & 10 & -11 \\ -1 & 2 & -5 \end{bmatrix}$$
  • Question 3
    1 / -0
    $$\left[ \begin{matrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{matrix} \right] +\left[ \begin{matrix} 5 & 1& -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{matrix} \right] \ $$

    What will be the sum of the diagonal elements of the resultant matrix?
    Solution
    $$\begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & -2 \\ 0 & 2 & 1 \end{bmatrix}+ \begin{bmatrix} 5 & 1 & -2 \\ 1 & 1 & 0 \\ -2 & -2 & 1 \end{bmatrix}= \begin{bmatrix} 6 & 1 & 0 \\ 0 & 2 & -2 \\ -2 & 0 & 2 \end{bmatrix}$$ 

    Sum of diagonal $$=6+2+2 = 10$$ 
  • Question 4
    1 / -0
    If $$A=\begin{bmatrix} 1 & 0 \\ \frac { 1 }{ 2 }  & 1 \end{bmatrix}$$, then $$A^{100}$$ is equal to
    Solution
    Given $$A=\begin{bmatrix}  1&  0\\  \dfrac{1}{2}&  1\end{bmatrix}$$


    $$A^2=\begin{bmatrix}  1&  0\\  \dfrac{1}{2}&  1\end{bmatrix}\times \begin{bmatrix}  1&  0\\  \dfrac{1}{2}&  1\end{bmatrix}=\begin{bmatrix}  1&  0\\  \dfrac{2}{2}&  1\end{bmatrix}$$


    $$A^3=\begin{bmatrix}  1&  0\\  \dfrac{2}{2}&  1\end{bmatrix}\times \begin{bmatrix}  1&  0\\  \dfrac{1}{2}&  1\end{bmatrix}=\begin{bmatrix}  1&  0\\  \dfrac{3}{2}&  1\end{bmatrix}$$

    $$A^4=\begin{bmatrix}  1&  0\\  \dfrac{3}{2}&  1\end{bmatrix}\times \begin{bmatrix}  1&  0\\  \dfrac{1}{2}&  1\end{bmatrix}=\begin{bmatrix}  1&  0\\  \dfrac{4}{2}&  1\end{bmatrix}$$

    $$A^n=\begin{bmatrix}  1&  0\\  \dfrac{n}{2}&  1\end{bmatrix}$$

    So 
    $$A^{100}=\begin{bmatrix}  1& 0 \\  \dfrac{100}{2}&1  \end{bmatrix}=\begin{bmatrix}  1&  0\\  50&  1\end{bmatrix}$$
  • Question 5
    1 / -0
    If$$A=\begin{bmatrix}1&3\\2&4\end{bmatrix}$$ and $$B=\begin{bmatrix}4&7\\5&6\end{bmatrix},$$ then $$AB=$$
    Solution
    Given,
    $$A=\begin{bmatrix}1&3\\2&4\end{bmatrix}$$ and $$B=\begin{bmatrix}4&7\\5&6\end{bmatrix}$$

    $$AB=\begin{bmatrix}1&3\\2&4\end{bmatrix}\begin{bmatrix}4&7\\5&6\end{bmatrix}$$

    $$=\begin{bmatrix}1(4)+3(5)&1(7)+3(6)\\2(4)+4(5)& 2(7)+4(6)\end{bmatrix}$$

    $$=\begin{bmatrix}19&25\\28&38\end{bmatrix}$$
  • Question 6
    1 / -0
    $$B=A+A^{2}+A^{3}+A^{4}$$ 
    If order of $$A$$ is $$3$$ then order of $$B$$ is 
    Solution
    The order of matrix does not change when the operation are done on it.
    So, the order of $$B$$ remains same as the order of $$A$$.
  • Question 7
    1 / -0
    If $$A=\begin{bmatrix} 2 & 5 & -3 \\ -1 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$ then $${A}^{2}$$ is
    Solution
    $$A^2=A.A=\begin{bmatrix} 2 & 5 & -3 \\ -1 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}.\begin{bmatrix} 2 & 5 & -3 \\ -1 & 3 & 1 \\ 4 & 1 & 2 \end{bmatrix}$$

    $$=\begin{bmatrix} -13\quad \quad  & 22\quad \quad  & 2\times -3+5\times 1+(-3)\times 2 \\ -1 & 5 & 8 \\ 15 & 25 & -7 \end{bmatrix}$$

    $$\begin{bmatrix} -13 & 22 & -7 \\ -1 & 5 & 8 \\ -15 & 25 & -7 \end{bmatrix}$$
    Hence, B will be correct answer.
  • Question 8
    1 / -0
    If the graph of $$y = f(x)$$ is symmetrical about the lines $$x = 1$$ and $$x = 2$$, then which of the following is true?
    Solution
    $$f(x)$$ is symmetrical about the line $$x=1$$

    So,
    $$f(1-x)=f(1+x)$$ .................... (1)

    $$f(x)$$ is symmetrical about the line $$x=2$$

    So,
    $$f(2-x)=f(2+x)$$ .................... (2)

    Replace $$x$$ with  $$1-x$$ in equation (1) ,

    $$f(1-1+x)=f(1+1-x)$$

    $$f(x)=f(2-x)$$ ..........................(3)

    From (2) and (3) ,

    $$f(x)=f(2+x)$$

  • Question 9
    1 / -0
    Find the inverse of the following matrix.

    $$\left[ {\begin{array}{ccccccccccccccc}0&1&2\\1&2&3\\3&1&1\end{array}} \right]$$
    Solution

  • Question 10
    1 / -0
    If $$A$$ and $$B$$ are two non-singular matrices and both are symmetric and commute each other, then
    Solution
    $$\begin{array}{l} \left| A \right| \ne 0\, \, \& \, \, \left| B \right| \ne 0 \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ \left( { { B^{ -1 } } } \right) ^{ T } }{ \left( { { A^{ -1 } } } \right) ^{ T } } \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ \left( { { B^{ T } } } \right) ^{ -1 } }{ \left( { { A^{ T } } } \right) ^{ -1 } }\, \, \, \, \left[ \begin{array}{l} { A^{ T } }=A \\ { B^{ T } }=B \end{array} \right]  \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ B^{ -1 } }{ A^{ -1 } } \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ \left( { AB } \right) ^{ -1 } }\, \, \, \, \, \, \left[ { AB=BA } \right]  \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ \left( { BA } \right) ^{ -1 } } \\ { \left( { { A^{ -1 } }{ B^{ -1 } } } \right) ^{ T } }={ A^{ -1 } }{ B^{ -1 } } \\ { A^{ -1 } }{ B^{ -1 } }\, is\, \, a\, symmetric\, \, matrix \end{array}$$
    similarly $$A^{-1}B$$ is also symmetric matrix.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now