Self Studies
Selfstudy
Selfstudy

Matrices Test - 40

Result Self Studies

Matrices Test - 40
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$$ and $$kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$, then the value of $$k, a, b $$, are respectively. 
    Solution
    If $$A=\begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$$
    then,
    $$kA=\begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix}$$

    But it is given that
    $$kA=\begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$

    So,
    $$\begin{bmatrix} 0 & 2k \\ 3k & -4k \end{bmatrix}$$$$=\begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$$

    $$\Rightarrow -4k=24$$
    $$k=-6$$

    $$3a=2k$$
    $$3a=-12$$
    $$a=-4$$

    $$2b=3k$$
    $$2b=-18$$
    $$b=-9$$
  • Question 2
    1 / -0
    If $$A = \left[ {\begin{array}{*{20}{c}}2 & 0 & 0\\0 & 2 & 0\\0 & 0 & 2\end{array}} \right]$$ then $$A^6$$ = _____________.
    Solution
    $$A=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}\\ A^{ 2 }=\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}=\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}\\ A^{ 4 }=A^{ 2 }A^{ 2 }=\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}=\begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix}\\ A^{ 6 }=A^{ 4 }A^{ 2 }=\begin{bmatrix} 16 & 0 & 0 \\ 0 & 16 & 0 \\ 0 & 0 & 16 \end{bmatrix}\begin{bmatrix} 4 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{bmatrix}=\begin{bmatrix} 64 & 0 & 0 \\ 0 & 64 & 0 \\ 0 & 0 & 64 \end{bmatrix}\\ taking\quad 32\quad out\quad we\quad get\\ A^{ 6 }=32\begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}=32A$$
  • Question 3
    1 / -0
    If $$\left[ {\begin{array}{*{20}{c}}x & 4 & { - 1}\end{array}} \right]\left[ {\begin{array}{*{20}{c}}2 & 1 & 0\\1 & 0 & 2\\0 & 2 & 4\end{array}} \right]\left[ {\begin{array}{*{20}{c}}x\\4\\{ - 1}\end{array}} \right] = 0$$ then $$x$$ is equal to
    Solution
    $$\left[ \begin{matrix} x &  4 & 1   \end{matrix} \right]_{1\times 3}\left[ \begin{matrix}2  & 1  & 0 \\ 1 & 0  & 2 \\ 0 &  2 & 4 \end{matrix} \right]_{3\times 3}\left[ \begin{matrix} x  \\  4  \\  -1  \end{matrix} \right]_{3\times 1}=0$$
    $$\left[ \begin{matrix} x &  4 & 1   \end{matrix} \right]_{1\times 3}\left[ \begin{matrix} 2x+4+0  \\  x+0-2  \\ 0+8-4 \end{matrix} \right]_{3\times 1}=0$$
    $$\Rightarrow\,2{x}^{2}+4x+4x-8-4=0$$
    $$\Rightarrow\,2{x}^{2}+8x-12=0$$
    $$\Rightarrow\,{x}^{2}+4x-6=0$$
    $$\Rightarrow\,{x}^{2}+2\times 2x+4-4-6=0$$
    $$\Rightarrow\,{\left(x+2\right)}^{2}=10$$
    $$\Rightarrow\,x+2=\pm\sqrt{10}$$
    $$\therefore\,x=-2\pm\sqrt{10}$$

  • Question 4
    1 / -0
    If $$A=\begin{bmatrix} 0 & c & -b \\ -c & 0 & a \\ b & -a & 0 \end{bmatrix},B=\begin{bmatrix} { a }^{ 2 } & ab & ac \\ ba & { b }^{ 2 } & bc \\ ca & cb & { c }^{ 2 } \end{bmatrix}$$ then $$AB=$$ 
    Solution
    $$AB=\begin{bmatrix} 0 & c & -b \\ -c & b & a \\ b & -a & 0 \end{bmatrix}\begin{bmatrix} a^{ 2 } & ab & ac \\ ba & b^{ 2 } & bc \\ ca & cb & c^{ 2 } \end{bmatrix}\\ =\begin{bmatrix} abc-abc & b^{ 2 }c^{ 1 }-b^{ 2 }c & bc^{ 2 }-bc^{ 2 } \\ -a^{ 2 }c+a^{ 2 }c & -abc+abc & -ac^{ 2 }+ac^{ 2 } \\ a^{ 2 }b-a^{ 2 }b & ab^{ 2 }-ab^{ 2 } & abc-abc \end{bmatrix}\\ =\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}=0\Rightarrow (A)$$
  • Question 5
    1 / -0
    The value of $$x$$, so that $$\left\lceil 1\quad x\quad 1 \right\rceil \begin{bmatrix} 1 & 3 & 2 \\ 0 & 5 & 1 \\ 0 & 3 & 2 \end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ x \end{bmatrix}=0$$ is
    Solution
    Consider, $$\begin{bmatrix} 1 & x & 1\end{bmatrix}\begin{bmatrix} 1 & 3 & 2\\ 0 & 5 & 1\\ 0 & 3 & 2\end{bmatrix}=1\begin{bmatrix} 1 & 3+5x+3 & 5\end{bmatrix}$$
    $$\begin{bmatrix} 1 & 6+5x & 5\end{bmatrix}\begin{bmatrix} 1 \\ 1 \\ x\end{bmatrix}=7+10x$$
    By given, we have
    $$7+10x =0$$
    $$\Rightarrow x=-\dfrac{7}{10}$$.
  • Question 6
    1 / -0
    If A be square matrix of order n and k is a scalar, then adj (KA) is:
    Solution

  • Question 7
    1 / -0
    If $$A = \left[ \begin{array} { c c } { a b } & { b ^ { 2 } } \\ { - a ^ { 2 } } & { - a b } \end{array} \right]$$ and $$A ^ { n } = 0$$ then the minimum value of $$n$$ is
    Solution
    $$A=\begin{bmatrix}ab&b^2\\-a^2&-ab\end{bmatrix}$$

    $$A^2=\begin{bmatrix}ab&b^2\\-a^2&-ab\end{bmatrix}\begin{bmatrix}ab&b^2\\-a^z&-ab\end{bmatrix}=\begin{bmatrix}a^2b^2-a^2b^2&ab^3-ab^3\\-a^3b+a^3b&-a^2b^2+a^2b^2\end{bmatrix}$$

    $$=\begin{bmatrix}0&0\\0&0\end{bmatrix}$$

    $$A^2=0$$

    $$\therefore n=2$$.
  • Question 8
    1 / -0
    If $$A$$ is matrix of order $$m\times n$$ and $$B$$ is a matrix such that $$AB'$$ and $$B'A$$ are both defined, then order of matrix $$B$$ is
    Solution
    Let $$B$$ is $$p\times q$$ matrix
    $$\Rightarrow B'$$ has $$q\times p$$ order.
    In order to define $$AB',$$ we must have
    $$\{(m\times n)\times (q\times p)\}\Rightarrow n=q$$
    Also, for $$B'A$$ to be defined,
    $$\{(q\times p)\times (m\times n)\}\Rightarrow p=m$$
    $$\Rightarrow B$$ is $$m\times n$$ matrix
    Hence, D will be correct answer.
  • Question 9
    1 / -0
    If $$A=\left[ \begin{matrix} a & b \\ b & a \end{matrix} \right] $$ and $$A^{2}=\left[ \begin{matrix} \alpha  & \beta  \\ \beta  & \alpha  \end{matrix} \right] $$ then
    Solution

  • Question 10
    1 / -0
    If $$A = \left[ {\begin{array}{*{20}{c}}1&2\\3&4\end{array}} \right]$$, then $$8A^{-4}$$ is equal to
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now