Self Studies

Matrices Test -...

TIME LEFT -
  • Question 1
    1 / -0

    If $$A=\left[ \begin{matrix} 6 & 9 \\ -4 & -6 \end{matrix} \right] $$, then $$A^{2}$$=

  • Question 2
    1 / -0

    If the order of $$A$$ is $$4 \times 3$$, the order of $$B$$ is $$4 \times 5$$ and the order of $$C ,\ 7\times 3$$ then the order of $$(A^{T}B^{T})^{T}C^{T}$$ is

  • Question 3
    1 / -0

    The inverse of a symmetric matrix is

  • Question 4
    1 / -0

    If $$\left[ \begin{matrix} a \\ 8 \end{matrix}\begin{matrix} 5 \\ b \end{matrix} \right]$$ $$-$$ $$\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 6 \\ 2 \end{matrix} \right]$$ =$$\left[ \begin{matrix} 2 \\ 1 \end{matrix}\begin{matrix} -1 \\ 5 \end{matrix} \right],$$ then value of $$a$$ is

  • Question 5
    1 / -0

    If $$A=\left[ \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{matrix} \right]$$ and $$A^{-1}=[\alpha_{ij}]_{3\times 3}$$ then $$\alpha_{23}=$$

  • Question 6
    1 / -0

    If $$A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$ and $$I$$ is the unit matrix of order $$2$$, then $$A^{2}$$ equals 

  • Question 7
    1 / -0

    If $$\begin{bmatrix} 3 & 2 & -1 \\ 4 & 9 & 2 \\ 5 & 0 & -2 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 7 \\ 2 \end{bmatrix}$$, then $$(x,\ y,\ z)=$$ 

  • Question 8
    1 / -0

    If A is a 2 X 2 matrix such that $$A^{2009} + A^{2008}$$= I, then : $$(A^{2008})^{-1}$$= 

  • Question 9
    1 / -0

    If $$\left[ \begin{matrix} 2 & -3 \\ 1 & \lambda  \end{matrix} \right] \times \left[ \begin{matrix} 1 & 5 & \mu  \\ 0 & 2 & -3 \end{matrix} \right] =\left[ \begin{matrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{matrix} \right],$$ then

  • Question 10
    1 / -0

    Let p be a non-singular matrix, $$1+p+p^{2}+....+p^{n}=0$$ (0 denotes the null matrix) then $$p^{-1}=$$

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now