Self Studies
Selfstudy
Selfstudy

Matrices Test - 41

Result Self Studies

Matrices Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\left[ \begin{matrix} 6 & 9 \\ -4 & -6 \end{matrix} \right] $$, then $$A^{2}$$=
    Solution

  • Question 2
    1 / -0
    If the order of $$A$$ is $$4 \times 3$$, the order of $$B$$ is $$4 \times 5$$ and the order of $$C ,\ 7\times 3$$ then the order of $$(A^{T}B^{T})^{T}C^{T}$$ is
    Solution
    Order of $$A=4\times 3$$
    $$\therefore $$ Order of $$A^{T}=3\times 4$$

    Order of $$B=4\times 5$$
    $$\therefore$$ Order of $$B^{T}=5\times 4$$

    Order of $$C=7\times 3$$
    $$\therefore$$Order of $$C^{T}=3\times 7$$

    Order of $$(A^{T}B^{T})=4\times 5$$

  • Question 3
    1 / -0
    The inverse of a symmetric matrix is
    Solution
    $$ A^{T}=A$$
    $$A^{-1}$$ exists.
    $$(A^{-1}A)^{T}=A^{T}(A^{-1})^{T}$$
    $$=A(A^{-1})^{T}=I^{T}=I$$

    $$A^{-1}A(A^{-1})^{T}=A^{-1}I$$
    $$I(A^{-1})^{T}=(A^{-1})^{T}=A^{-1}$$

    $$\therefore$$ The inverse of a symmetric matrix is also symmetric.
  • Question 4
    1 / -0
    If $$\left[ \begin{matrix} a \\ 8 \end{matrix}\begin{matrix} 5 \\ b \end{matrix} \right]$$ $$-$$ $$\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 6 \\ 2 \end{matrix} \right]$$ =$$\left[ \begin{matrix} 2 \\ 1 \end{matrix}\begin{matrix} -1 \\ 5 \end{matrix} \right],$$ then value of $$a$$ is
    Solution
    Since, $$\left[ \begin{matrix} a \\ 8 \end{matrix}\begin{matrix} 5 \\ b \end{matrix} \right]$$ $$-$$ $$\left[ \begin{matrix} 4 \\ 7 \end{matrix}\begin{matrix} 6 \\ 2 \end{matrix} \right]$$ =$$\left[ \begin{matrix} 2 \\ 1 \end{matrix}\begin{matrix} -1 \\ 5 \end{matrix} \right]$$
    By equating above matrices, we get
    $$a-4=2$$
    $$\Rightarrow a=2+4$$
    $$\Rightarrow a=6$$
  • Question 5
    1 / -0
    If $$A=\left[ \begin{matrix} 1 & 0 & -1 \\ 3 & 4 & 5 \\ 0 & 6 & 7 \end{matrix} \right]$$ and $$A^{-1}=[\alpha_{ij}]_{3\times 3}$$ then $$\alpha_{23}=$$
    Solution

  • Question 6
    1 / -0
    If $$A=\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$ and $$I$$ is the unit matrix of order $$2$$, then $$A^{2}$$ equals 
    Solution
    $$\begin{array}{l} A=\left( { \begin{array} { *{ 20 }{ c } }2 & { -1 } \\ { -1 } & 2 \end{array} } \right)  \\ I=\left( { \begin{array} { *{ 20 }{ c } }1 & 0 \\ 0 & 1 \end{array} } \right)  \\ { A^{ 2 } }=A\cdot A \\ =\left( { \begin{array} { *{ 20 }{ c } }2 & { -1 } \\ { -1 } & 2 \end{array} } \right) \left( { \begin{array} { *{ 20 }{ c } }2 & { -1 } \\ { -1 } & 2 \end{array} } \right)  \\ =\left( { \begin{array} { *{ 20 }{ c } }{ 2\times 2+1 } & { -2-2 } \\ { -2-2 } & { 1+4 } \end{array} } \right)  \\ =\left( { \begin{array} { *{ 20 }{ c } }5 & { -4 } \\ { -4 } & 5 \end{array} } \right)  \\ Now, \quad 4A-3I \\= 4\left( { \begin{array} { *{ 20 }{ c } }8 & { -4 } \\ { -4 } & 8 \end{array} } \right) -\left( { \begin{array} { *{ 20 }{ c } }3 & 0 \\ 0 & 3 \end{array} } \right)  \\ = \left( { \begin{array} { *{ 20 }{ c } }{ 8-3 } & { -4-0 } \\ { -4-0 } & { 8-3 } \end{array} } \right)  \\ = \left( { \begin{array} { *{ 20 }{ c } }5 & { -4 } \\ { -4 } & 5 \end{array} } \right) ={ A^{ 2 } } \end{array}$$
  • Question 7
    1 / -0
    If $$\begin{bmatrix} 3 & 2 & -1 \\ 4 & 9 & 2 \\ 5 & 0 & -2 \end{bmatrix}\begin{bmatrix} x \\ y \\ z \end{bmatrix}=\begin{bmatrix} 0 \\ 7 \\ 2 \end{bmatrix}$$, then $$(x,\ y,\ z)=$$ 
    Solution
    $$\begin{bmatrix} 3 & 2 & -1\\ 4 & 9 & 2\\ 5 & 0 & -2\end{bmatrix}\begin{bmatrix} x \\ y\\ z\end{bmatrix}=\begin{bmatrix} 0\\ 7\\ 2\end{bmatrix}$$
    Thus, multiplying
    $$3x+2y-z=0$$ …………..$$(1)$$
    $$4x+9y+2z=7$$ ………..$$(2)$$
    $$5x-2z=2$$ …………$$(3)$$
    Thus $$z=\dfrac{5x-2}{2}$$
    $$\therefore 3x+2y=\dfrac{5x-2}{2}$$
    $$\therefore 6x+4y=5x-2$$
    $$\therefore x+4y=-2$$ …………$$(4)$$
    Also,
    $$4x+9y+2\left(\dfrac{5x-2}{2}\right)=7$$
    $$9x+9y=9$$
    $$\therefore x+y=1$$ ………..$$(5)$$
    Solving $$(4)$$ and $$(5)$$
    $$3y=-3$$
    $$y=-1$$
    $$\therefore x=1-y$$
    $$=1-(-1)=2$$
    $$\therefore x=2$$
    $$\therefore z=\dfrac{5x-2}{2}=\dfrac{5(2)-2}{2}$$
    $$\therefore z=4$$
    $$=4$$
    $$(x, y, z)=(2, -1, 4)$$.
  • Question 8
    1 / -0
    If A is a 2 X 2 matrix such that $$A^{2009} + A^{2008}$$= I, then : $$(A^{2008})^{-1}$$= 
    Solution

  • Question 9
    1 / -0
    If $$\left[ \begin{matrix} 2 & -3 \\ 1 & \lambda  \end{matrix} \right] \times \left[ \begin{matrix} 1 & 5 & \mu  \\ 0 & 2 & -3 \end{matrix} \right] =\left[ \begin{matrix} 2 & 4 & 1 \\ 1 & -1 & 13 \end{matrix} \right],$$ then
    Solution
    Given,
    $$\pmatrix{2&-3\\1&\lambda}\times \pmatrix{1&5& \mu\\0&2&-3}$$=$$\pmatrix{2&4&1\\1&-1&13}$$

    $$\pmatrix{2&4&2\mu-9\\1&5+2\lambda&\mu-3\lambda}=\pmatrix{2&4&1\\1&-1&13}$$

    Comparing both sides we get
    $$2\mu+9=1\implies 2\mu=-8\implies \mu=-4$$

    Also $$5+2\lambda=-1\implies 2\lambda=6\implies \lambda=3$$

    Hence, we get $$\mu=-4,\lambda=3.$$
  • Question 10
    1 / -0
    Let p be a non-singular matrix, $$1+p+p^{2}+....+p^{n}=0$$ (0 denotes the null matrix) then $$p^{-1}=$$
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now