Self Studies
Selfstudy
Selfstudy

Matrices Test - 43

Result Self Studies

Matrices Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$A=\begin{bmatrix} 2 & -1\\ -7 & 4\end{bmatrix}$$ and $$B=\begin{bmatrix} 4 & 1\\ 7 & 2\end{bmatrix}$$ then $$B^TA^T$$ is equal to?
    Solution

  • Question 2
    1 / -0
    If $$A^2-A+1=0$$, then the inverse of A is?
    Solution

  • Question 3
    1 / -0
    Let $$\begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix}.\begin{bmatrix} 1 & n-1\\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 78\\ 0 & 1\end{bmatrix}$$
    If $$A=\begin{bmatrix} 1 & n\\ 0 & 1\end{bmatrix}$$ then $$A^{-1}=?$$
    Solution
    $$\begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix}\begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix}..\begin{bmatrix} 1 & n-1\\ 0 & 1\end{bmatrix}=\begin{bmatrix} 1 & 78\\ 0 & 1\end{bmatrix}$$
    $$\Rightarrow \dfrac{n(n-1)}{2}=78\Rightarrow n=13$$
    $$A=\begin{bmatrix} 1 & 13\\ 0 & 1\end{bmatrix}$$
    so $$A^{-1}=\begin{bmatrix} 1 & -13\\ 0 & 1\end{bmatrix}$$.
  • Question 4
    1 / -0
    If $$\begin{bmatrix} 1 & 1\\ -1 & 1\end{bmatrix}\begin{bmatrix} x \\ y\end{bmatrix}=\begin{bmatrix} 2 \\ 4\end{bmatrix}$$, then the values of $$x $$ and $$y $$ respectively are?
    Solution
    On equating given two matrices, we get
    $$x+y=2$$ and $$-x+y=4$$

    Solving for $$x, y : x=-1, y=3$$.
  • Question 5
    1 / -0
    If $$\begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix}\begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix} ..\begin{bmatrix} 1 & n-1\\ 0 & 1\end{bmatrix} =\begin{bmatrix} 1 & 78\\ 0 & 1\end{bmatrix}$$, then the inverse of $$\begin{bmatrix} 1 & n\\ 0 & 1\end{bmatrix}$$ is?
    Solution
    $$\begin{bmatrix} 1 & 1\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix}\begin{bmatrix} 1 & 2\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & 3\\ 0 & 1\end{bmatrix} \begin{bmatrix} 1 & n-1\\ 0 & 1\end{bmatrix} =\begin{bmatrix} 1 & 78\\ 0 & 1\end{bmatrix}$$
    $$\Rightarrow \begin{bmatrix} 1 & 1+2+3+...+n-1\\ 0 & 1\end{bmatrix}=$$ $$\begin{bmatrix} 1 & 78\\ 0 & 1\end{bmatrix}$$
    $$\Rightarrow \dfrac{n(n-2)}{2}=78\Rightarrow n=13$$, $$-12$$ (reject)
    $$\therefore$$ We have to find inverse of $$\begin{bmatrix} 1 & 13\\ 0 & 1\end{bmatrix}$$
    $$\therefore \begin{bmatrix} 1 & -13\\ 0 & 1\end{bmatrix}$$
  • Question 6
    1 / -0
    If $$A = \begin{bmatrix} n& 0 & 0\\ 0 & n & 0\\ 0 & 0 & n\end{bmatrix}$$ and $$B = \begin{bmatrix}a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} & c_{3}\end{bmatrix}$$, then $$AB$$ is equal to
    Solution
    Let, $$A = \begin{bmatrix} n& 0 & 0\\ 0 & n & 0\\ 0 & 0 & n\end{bmatrix}$$ and 

    $$B = \begin{bmatrix}a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} & c_{3}\end{bmatrix}$$.

    Now,

    $$AB = \begin{bmatrix} n& 0 & 0\\ 0 & n & 0\\ 0 & 0 & n\end{bmatrix}$$ $$ \begin{bmatrix}a_{1} & a_{2} & a_{3}\\ b_{1} & b_{2} & b_{3}\\ c_{1} & c_{2} & c_{3}\end{bmatrix}$$

    or, $$A B= \begin{bmatrix}na_{1} & na_{2} & na_{3}\\ nb_{1} & nb_{2} & nb_{3}\\ nc_{1} & nc_{2} & nc_{3}\end{bmatrix}$$

    or, $$AB=nB$$.
  • Question 7
    1 / -0
    If $$A = \begin{bmatrix}1 & 2 & x\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}$$ and $$B = \begin{bmatrix}1 & -2 & y\\ 0 & 1 & 0\\ 0 & 0 & 1\end{bmatrix}$$ and $$AB = I_{3}$$, then $$x + y=$$ _____.
    Solution

  • Question 8
    1 / -0
    If $$A = \begin{bmatrix}1 & 0 & 0\\ 0 & 1 & 0\\ a & b & -1\end{bmatrix}$$, then $$A^{2}$$ is equal to
    Solution

  • Question 9
    1 / -0
    If $$A = \begin{bmatrix}3 &-4 \\ -1 & 2\end{bmatrix}$$ and $$B$$ is a square matrix of order $$2$$ such that $$AB = I$$ then $$B = ?$$
    Solution

  • Question 10
    1 / -0
    If $$ \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}A\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}  $$ , then A = 
    Solution
    $$ \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}A\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}=\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} $$

    $$ A = \begin{bmatrix} 2 & 1 \\ 3 & 2 \end{bmatrix}^{ -1 }\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}\begin{bmatrix} -3 & 2 \\ 5 & -3 \end{bmatrix}^{-1} $$

    $$ \Rightarrow A =  \begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}(-1)\begin{bmatrix} -3 & -2 \\ -5 & -3 \end{bmatrix}$$

    $$ = (-1)\begin{bmatrix} 2 & -1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} 3 & 2 \\ 5 & 3 \end{bmatrix}=-\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now