Self Studies

Determinants Test - 15

Result Self Studies

Determinants Test - 15
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If A2 - 2A - I = 0,then inverse of A is:

    Solution

    Given: A2 - 2A - I = 0

    ⇒ A.A - 2A = I

    Post multiply by A-1, we get

    AAA-1 - 2AA-1 = IA-1

    ⇒ AI - 2I = A-1             [∵ AA- 1 = A-1 A = I]

    ∴ A-1 = A - 2

    The inverse of A is A - 2

    Hence, the correct option is (C).

  • Question 2
    1 / -0

    If a matrix A has inverses B and C, then which one of the following is correct?

    Solution

    If A, B, C are matrices then A(BC) = (AB)C

    A-1 A = I

    Given that, A has inverse B

    AB = I = BA ....(1)

    Also, A has inverse C.

    AC = I = CA ....(2)

    From (1) and (2),

    AB = AC ....(3)

    Pre multiply equation (3) by A-1

    A-1 (AB) = A-1 (AC)

    ⇒ A-1 (AB) = A-1 (AC)

    ⇒ (A-1 A)B = (A-1A)C

    ⇒ (IB) = (IC)

    ⇒ B = C

    Thus, if a matrix A has inverses B and C then, B should be equal to C.

    Hence, the correct option is (B).

  • Question 3
    1 / -0

    For what values of \(k\), the equations:

    \(x+y+z=1\)

    \(2 x+y+4 z=k\)

    \(4 x+y+10 z=k^{2}\)

    have a solution?

    Solution

    The coefficient matrix for the given system of equations is:

    \(\operatorname{det}(A)=1(10-4)+1(16-20)+1(2-4)=6-4-2=0\)

    Therefore, either there is no solution (inconsistent) or there are infinitely many solutions (consistent and dependent).

    Let, us convert the augmented matrix into the row echelon form to find its solutions. The augmented matrix is:

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 2 & 1 & 4 & \mid & k \\ 4 & 1 & 10 & \mid & k ^{2}\end{array}\right]\)

    \(R _{3} \rightarrow R _{3}-4 R _{1}\)

    \(R _{2} \rightarrow R _{2}-2 R _{1}\)

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & -3 & 6 & \mid & k ^{2}-4\end{array}\right]\)

    \(R _{3} \rightarrow R _{3}-3 R _{2}\)

    \(A \mid B =\left[\begin{array}{ccccc}1 & 1 & 1 & \mid & 1 \\ 0 & -1 & 2 & \mid & k -2 \\ 0 & 0 & 0 & \mid & k ^{2}-3 k +2\end{array}\right]\)

    The rank of both the coefficient matrix and the augmented matrix must be equal for the system to be consistent.

    \(\therefore k ^{2}-3 k +2=0\)

    \(\Rightarrow k ^{2}-2 k - k +2=0\)

    \(\Rightarrow k ( k -2)-( k -2)=0\)

    \(\Rightarrow( k -2)( k -1)=0\)

    \(\Rightarrow k -2=0\) OR \(k -1=0\)

    \(\Rightarrow k =2\) or \(k =1\)

    Hence, the correct option is (B).

  • Question 4
    1 / -0

    Find the value of \(k\) if \(|A|=k\) such that \(A=\left[\begin{array}{cc}2 \cos x & -2 \sin x \\ \sin x & \cos x\end{array}\right]\)?

    Solution

    Given: \(A=\left[\begin{array}{cc}2 \cos x & -2 \sin x \\ \sin x & \cos x\end{array}\right]\) and \(|\mathrm{A}|=\mathrm{k}\)

    As we know that, if \(A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]\) is a square matrix of order 2, then determinant of \(\mathrm{A}\) is given by \(|\mathrm{A}|=\left(\mathrm{a}_{11} \times \mathrm{a}_{22}\right)-\left(\mathrm{a}_{12}-\mathrm{a}_{21}\right)\)

    \(\Rightarrow|\mathrm{A}|=2 \cos ^{2} x+2 \sin ^{2} x=k\)

    \(\Rightarrow k=2 \times\left(\sin ^{2} x+\cos ^{2} x\right)=2 \ldots \ldots \left(\because \sin ^{2} x+\cos ^{2} x=1\right)\)

    Hence, the correct option is (A).

  • Question 5
    1 / -0

    If a matrix A is such that 3A3+2A2+5A+I=0 then what is A1 equal to?

    Solution

    Given, a matrix A is such that 3A3+2A2+5A+I=0

    Consider, 3A3+2A2+5A+I=0

    Pre - Multiply the above polynomial by A1.

    A1(3A3+2A2+5A+I)=A1(0)

    3A1A3+2A1A2+5A1A+A1I=0

    3A1AA2+2A1AA+5A1A+A1I=0

    We know that A1A=I and A1I=A1

    3A2+2A+5I+A1=0

    3A2+2A+5I+A1=0

    3A2+2A+5I+A1=0

    A1=(3A2+2A+5I)

    Hence, the correct option is (A).

  • Question 6
    1 / -0

    For what value of \(\alpha \in R\) the system of equation: \(x+2 y+z=3,2 x+4 y+2 z=6\) and \(\alpha x+ \alpha y+ \alpha z=3\alpha\) has infinitely many solutions.

    Solution

    By cramer’s rule:

    If \(\Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\), then the system is consistent and has infinitely many solutions.

    Given: \(x+y+z=3,2 x+2 y+2 z=6\) and \(a x+a y+a z=3 a\) As we know that,

    \(\Delta=\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{1}=\left|\begin{array}{lll}d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3}\end{array}\right|, \Delta_{2}=\left|\begin{array}{lll}a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3}\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3}\end{array}\right|\)

    \(\Rightarrow \Delta=\left|\begin{array}{ccc}1 & 1 & 1 \\ 2 & 4 & 1 \\ \alpha & \alpha & \alpha\end{array}\right|, \Delta_{1}=\left|\begin{array}{ccc}3 & 1 & 1 \\ 6 & 4 & 1 \\ 3 \alpha & \alpha & \alpha\end{array}\right|, \Delta_{2}=\left|\begin{array}{ccc}1 & 3 & 1 \\ 2 & 6 & 1 \\ \alpha & 3 \alpha & \alpha\end{array}\right|\) and \(\Delta_{3}=\left|\begin{array}{ccc}1 & 1 & 3 \\ 2 & 4 & 6 \\ \alpha & \alpha & 3 \alpha\end{array}\right|\)

    \(\Rightarrow \Delta=0\) and \(\Delta_{1}=\Delta_{2}=\Delta_{3}=0\)

    Thus, the given system has infinite solution for \(\alpha \in R\).

    Hence, the correct option is (B).

  • Question 7
    1 / -0

    The system of equations:

    \(2 x+y-3 z=5\)

    \(3 x-2 y+2 z=5\) and

    \(5 x-3 y-z=16\)

    Solution

    Let, the system of equations be:

    \(a_{1} x+b_{1} y+c_{1} z=d_{1}\)

    \(a_{2} x+b_{2} y+c_{2} z=d_{2}\)

    \(a_{3} x+b_{3} y+c_{3} z=d_{3}\)

    \(\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]\) \(=\mathrm{AX}=\mathrm{B}\)

    \(X=A^{-1} B=\frac{\operatorname{adj}(A)}{\operatorname{det}(A)} B\)

    If \(\operatorname{det}(A) \neq 0\), system is consistent having unique solution.

    If \(\operatorname{det}(A)=0\) and \((\operatorname{adj} A) . B=0\), system is consistent, with infinitely many solutions.

    If \(\operatorname{det}(A)=0\) and \(( adj A) . B \neq 0\), system is inconsistent (no solution)

    Given: The system of equations

    \(2 x+y-3 z=5\)

    \(3 x-2 y+2 z=5\) and

    \(5 x-3 y-z=16\)

    So, \(A=\left[\begin{array}{ccc}2 & 1 & -3 \\ 3 & -2 & 2 \\ 5 & -3 & -1\end{array}\right]\)

    det \((\mathrm{A})=|\mathrm{A}|=2 \times\{(-2 \times-1)-(-3 \times 2)\}-1 \times\{(3 \times-1)-(2 \times 5)\}+(-3) \times\{(3 \times-3)-(5 \times-2)\}\)

    \(\Rightarrow|\mathrm{A}|=2 \times(2+6)-1 \times(-3-10)-3 \times(-9+10)\)

    \(\Rightarrow|\mathrm{A}|=16+13-3=26\)

    \(\therefore|\mathrm{A}| \neq 0\)

    So, system is consistent having unique solution.

    Hence, the correct option is (B).

  • Question 8
    1 / -0

    If \(A ^{-1}=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 3 \\ 3 & 1 & 6\end{array}\right]=\frac{\operatorname{adj}( A )}{ k }\), then \(k =?\)

    Solution

    From the definition of the inverse of a matrix, \(A^{-1}=\frac{\operatorname{adj}(A)}{|A|}\)

    Therefore, in the given question, \(k=|A|\).

    Using the properties of the determinant of inverse of a matrix, we have:

    \(k =| A |=\frac{1}{\left| A ^{-1}\right|}\)

    Now, \(\left|A^{-1}\right|=1(24-3)+2(9-12)+3(2-12)=21-6-30=-15\)

    Therefore, \(k =-15\)

    Hence, the correct option is (B).

  • Question 9
    1 / -0

    Find the value of \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\)

    Solution

    Given determinant is \(\left|\begin{array}{lll}0 & c & b \\ c & 0 & a \\ b & a & 0\end{array}\right|^{2}\), simplifying the determinant based on first row we get,

    \(=\left\{0 \times\left(0-a^{2}\right)-c \times(c \times 0-b \times a)+b(c \times a-b \times 0)\right\}^{2}\)

    \(=(a b c+a b c)^{2}\)

    \(=4 a^{2} b^{2} c^{2}\)

    So, the right answer is \(4 \mathrm{a}^{2} \mathrm{~b}^{2} \mathrm{c}^{2}\)

    Hence, the correct option is (B).

  • Question 10
    1 / -0

    The cofactor of the element 4 in the determinant \(\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9\end{array}\right]\) is:

    Solution

    We have \(\left[\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 5 & 8 & 9\end{array}\right]\)

    Eliminate row and column containing 4 we get:

    \(\left[\begin{array}{ll}2 & 3 \\ 8 & 9\end{array}\right]\)

    Now, determinant \(=2 \times 9-(8 \times 3)\)

    \(=-6\)

    Now from sign convention of \(3 \times 3\), matrix

    For element 4, sign is -ve:   \(\quad \quad\quad\left(\because\left[\begin{array}{lll}+ & - & + \\ - & + & - \\ + & - & +\end{array}\right]\right)\)

    \(\therefore\) Cofactor of element 4 is 6.

    Hence, the correct option is (C).

  • Question 11
    1 / -0

    If \(\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\), then \(\left|\mathrm{ABB}^{\prime}\right|=\)

    Solution

    \(\mathrm{A}=\left[\begin{array}{ll}1 & 3 \\ 4 & 2\end{array}\right]\)

    \(\operatorname{det} \mathrm{A}=2-12\)

    \(=-10\)

    \(\mathrm{~B}=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\)

    \(\operatorname{det} \mathrm{B}=4-(-1)\)

    \(=5\)

    \(\mathrm{~B}^{\prime}=\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]\)

    \(\operatorname{det} \mathrm{B}^{\prime}=4-(-1)\)

    \(=5\)

    \(\left|\mathrm{ABB}^{\prime}\right|=|\mathrm{A}||\mathrm{B} \|| \mathrm{B}^{\prime} \mid\)

    \(=(-10)(5)(5)\)

    \(=-250\)

    Hence, the correct option is (B).

  • Question 12
    1 / -0

    Find the cofactor matrix for the matrix \(A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ -2 & 3 & 5 \\ 4 & -2 & 1\end{array}\right]\)?

    Solution

    Given: \(A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ -2 & 3 & 5 \\ 4 & -2 & 1\end{array}\right]\)

    Here, we have to find the cofactor matrix for the given matrix A As we know that, cofactor of an element \(\mathrm{a}_{\mathrm{ij}}\) is given by:

    \(C_{i j}=\left\{\begin{array}{c}M_{i j}, \text { when } i+j \text { is even } \\ -M_{i j}, \text { when } i+j \text { is odd }\end{array}\right.\)

    \(C_{11}=(-1)^{2} \times\left|\begin{array}{cc}3 & 5 \\ -2 & 1\end{array}\right|=13\)

    \(C_{12}=(-1)^{3} \times\left|\begin{array}{cc}-2 & 5 \\ 4 & 1\end{array}\right|=22\)

    \(C_{13}=(-1)^{4} \times\left|\begin{array}{cc}-2 & 3 \\ 4 & -2\end{array}\right|=-8\)

    Similarly, we can say that \(\mathrm{C}_{21}=-8, \mathrm{C}_{22}=-13\) and \(\mathrm{C}_{23}=6\)

    Similarly, we can also say that, \(\mathrm{C}_{31}=1, \mathrm{C}_{32}=-1\) and \(\mathrm{C}_{33}=1\)

    So, the required cofactor matrix is \(\left[\begin{array}{ccc}13 & 22 & -8 \\ -8 & -13 & 6 \\ 1 & -1 & 1\end{array}\right]\)

    Hence, the correct option is (B).

  • Question 13
    1 / -0

    What is the value of the determinant \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\) where \(\mathrm{i}=\sqrt{-1}\)?

    Solution

    Given determinant is \(\left|\begin{array}{ccc}\mathrm{i} & \mathrm{i}^{2} & \mathrm{i}^{3} \\ \mathrm{i}^{4} & \mathrm{i}^{6} & \mathrm{i}^{8} \\ \mathrm{i}^{9} & \mathrm{i}^{12} & \mathrm{i}^{15}\end{array}\right|\)

    Since, we have,

    \(\mathrm{i}=\sqrt{-1}\)

    \(\mathrm{i}^{2}=-1, \mathrm{i}^{3}=-\mathrm{i}, \mathrm{i}^{4}=1,\mathrm{i}^{6}=-1, \mathrm{i}^{8}=1, \mathrm{i}^{9}=\mathrm{i}, \mathrm{i}^{12}=1 \text {, and } \mathrm{i}^{15}=-\mathrm{i}\)

    \(=\left|\begin{array}{ccc}\mathbf{i} & -1 & -\mathrm{i} \\ 1 & -1 & 1 \\ \mathrm{i} & 1 & -\mathrm{i}\end{array}\right|\)

    \(=\mathrm{i}(\mathrm{i}-1)+1(-\mathrm{i}-\mathrm{i})-\mathrm{i}(1+\mathrm{i})\)

    \(=\mathrm{i}^{2}-\mathrm{i}-2\mathrm{i}-\mathrm{i}-\mathrm{i}^{2}\)

    \(=-4 \mathrm{i}\)

    Hence, the correct option is (D).

  • Question 14
    1 / -0

    The solution of the matrix equation \(\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]\) is:

    Solution

    The system of linear non-homogeneous equations in matrix form is written as:

    \(A X=B\)

    Let, A be a \(3 \times 3\) matrix:

    \(A =\left[\begin{array}{lll} a _{11} & a _{12} & a _{13} \\ a _{21} & a _{22} & a _{23} \\ a _{31} & a _{32} & a _{33}\end{array}\right], X =\left[\begin{array}{l} x _{1} \\ x _{2} \\ x _{3}\end{array}\right], B =\left[\begin{array}{l} b _{1} \\ b _{2} \\ b _{3}\end{array}\right]\)

    \(a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}\)

    \(a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2}\)

    \(a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}\)

    The set of values \(x_{1}, x_{2}, x_{3}\) which satisfies the above equations are called the solutions of the system.

    \(\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}9 \\ 6 \\ 2\end{array}\right]\)

    \(2 x-y+3 z=9 \quad \quad \ldots\)(1)

    \(x+y+z=6 \quad \quad \ldots\)(2)

    \(x-y+z=2 \quad \quad \ldots\)(3)

    On solving equation (1), (2), and (3) using the elimination method we will get the values 

    \(x = 1, y = 2, z = 3\)

    Hence, the correct option is (A).

  • Question 15
    1 / -0

    If \(a_{1}, a_{2}, a_{3},=t_{9}, a_{9}\) are in GP, then what is the value of the following determinant?

    \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

    Solution

    Let \({r}\) be the common ratio of the given GP

    Now,

    \(\left|\begin{array}{lll}\ln a_{1} & \ln a_{2} & \ln a_{3} \\ \ln a_{4} & \ln a_{5} & \ln a_{6} \\ \ln a_{7} & \ln a_{8} & \ln a_{9}\end{array}\right|\)

    Apply, \(\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}\) and \(\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{1}\)

    \(\begin{aligned}&=\left|\begin{array}{lll}\ln a_{1} & \ln a_{2}-\ln a_{1} & \ln a_{3}-\ln a_{2} \\ \ln a_{4} & \ln a_{5}-\ln a_{4} & \ln a_{6}-\ln a_{5} \\ \ln a_{7} & \ln a_{8}-\ln a_{7} & \ln a_{9}-\ln a_{8}\end{array}\right| \\&=\left|\begin{array}{lll}\ln a_{1} & \ln r & \ln r \\ \ln a_{4} & \ln r & \ln r \\ \ln a_{7} & \ln r & \ln r\end{array}\right| \quad\left[\text { Since, } \frac{a_{p+1}}{a_{p}}=r \text { and } \log a_{p+1}-\log a_{p}=\log \frac{a_{p+1}}{a_{p}}=\log \right]\end{aligned}\)

    \(=0\qquad  \qquad{\left[\text { Since, } \text{C}_{3}=\text{C}_{2}\right]}\)

    Hence, the correct option is (A).

  • Question 16
    1 / -0

    If \({A}=\left[\begin{array}{ll}{x} & 2 \\ 4 & {x}\end{array}\right]\) and det \(\left(A^{2}\right)=64\), then \({x}\) is equal to:

    Solution

    Given that,

    \(A=\left[\begin{array}{ll}x & 2 \\ 4 & x\end{array}\right]\) and \(\operatorname{det}\left\{A^{2}\right\}=64\)

    \(\Rightarrow|\mathrm{A}|={x}^{2}-8 \quad \quad \ldots(1)\)

    Given \(\left|\mathrm{A}^{2}\right|=64\)

    \(\Rightarrow|\mathrm{A}|^{2}=64 \quad \quad\) \(\left[\because\left|\mathrm{A}^{\mathrm{n}}\right|=|\mathrm{A}|^{\mathrm{n}}\right]\)

    \(\Rightarrow|\mathrm{A}|=(64)^{\frac{1}{2}}=8\quad \quad \ldots(2)\)

    From equation (1) and (2),

    \(x^{2}-8=8\)

    \(\Rightarrow x^{2}=16\)

    \(\Rightarrow x=\pm 4\)

    Hence, the correct option is (C).

  • Question 17
    1 / -0

    Let A be a non-singular matrix of the order 2 × 2 then |A-1| =

    Solution

    Let, A is the second-order matrix,

    As we know, AA-1 = I

    Taking determinants both sides, we get:

    det (AA-1) = det I

    det(A-1) × det (A) = 1              [∵ det (AB) = det A × det B]

    ∴ det(A-1) = 1det(A)=1|A|" role="presentation">\(\frac{1}{\operatorname{det}(\mathrm{A})}\)=\(\frac{1}{|\mathrm{~A}|}\)

    Hence, the correct option is (B).

  • Question 18
    1 / -0

    Find the area of triangle with vertices at points A (1, 1) ,B ( 6, 0) and C ( 3, 2).

    Solution

    Given vertices are A (1, 1) ,B ( 6, 0) and C ( 3, 2).

    We know that area of triangle ABC is given by,

    \(\Delta=\frac{1}{2}\left|\begin{array}{lll}{x}_{1} & {y}_{1} & 1 \\ {x}_{2} & {y}_{2} & 1 \\ {x}_{3} & {y}_{3} & 1\end{array}\right|\)

    \(\Rightarrow \Delta=\frac{1}{2}\left|\begin{array}{ccc}1 & 1 & 1 \\ 6 & 0 & 1 \\ 3 & 2 & 1\end{array}\right|\)

    \(\Rightarrow \Delta=\frac{1}{2}[1(0-2)-1(6-3)+1(12-0)]\)

    \(\Rightarrow \Delta=\frac{7}{2}\)

    Hence, the correct option is (A).

  • Question 19
    1 / -0

    Find \(M_{13} \times C_{21}+C_{33} \times C_{31}\) for the given matrix \(A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & -1 \\ 3 & 1 & -2\end{array}\right]\), where \(M_{i j}\) and \(C_{i j}\) are the respective minor and co-factor of the element \(a_{i j}\)?

    Solution

    Given: \(A=\left[\begin{array}{ccc}2 & -3 & 4 \\ 1 & 0 & -1 \\ 3 & 1 & -2\end{array}\right]\)

    Here, we have to find the value of \(M_{13} \times C_{21}+C_{33} \times C_{31}\) for the given matrix

    \(M_{13}=\left|\begin{array}{cc}1 & 0 \\ 3 & 1\end{array}\right|=1-0=1\)

    \(C_{21}=(-1)^{3} \times\left|\begin{array}{cc}-3 & 4 \\ 1 & -2\end{array}\right|=-1 \times(6-4)=-2\)

    \(C_{31}=(-1)^{4} \times\left|\begin{array}{cc}-3 & 4 \\ 0 & -1\end{array}\right|=1 \times(3-0)=3\)

    \(C_{33}=(-1)^{6} \times\left|\begin{array}{cc}2 & -3 \\ 1 & 0\end{array}\right|=1 \times(0+3)=3\)

    \(M_{13} \times C_{21}+C_{33} \times C_{31}=1 \times(-2)+3 \times 3=7\)

    Hence, the correct option is (A).

  • Question 20
    1 / -0

    If the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent, then the values of \(k\) are:

    Solution

    If the system of equation \(a_{1} x+b_{1} y+c_{1}=0, a_{2} x+b_{2} y+c_{2}=0, a_{3} x+b_{3} y+c_{3}=\) 0 be consistent, then:

    \(\left|\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right|=0\)

    Given, the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent.

    \(\left|\begin{array}{ccc}2 & 3 & 5 \\ 1 & k & 5 \\ k & -12 & -14\end{array}\right|=0\)

    \(2(-14 k+60)-3(-14-5 k)+5\left(-12-k^{2}\right)=0\)

    \(\Rightarrow-28 k+120+42+15 k-60-5 k^{2}=0\)

    \(\Rightarrow-5 k^{2}-13 k+102=0\)

    \(\Rightarrow 5 k^{2}+13 k-102=0\)

    \(\Rightarrow 5 k^{2}-30 k+17 k-102=0\)

    \(\Rightarrow 5 k(k-6)+17(k-6)=0\)

    \(\Rightarrow(k-6)(5 k+17)=0\)

    \(\Rightarrow k=6, \frac{-17}{5}\)

    Thus, if the system of equation \(2 x+3 y+5=0, x+k y+5=0, k x-12 y-14=0\) be consistent, then the values of \(k\) are \(6, \frac{-17}{5}\)

    Hence, the correct option is (A).

  • Question 21
    1 / -0

    If A is a square matrix, then what is adj AT - (adj A)T equal to?

    Solution

    Let, A be any square matrix.

    (adj AT) = |AT| (AT-1

    (adj A)T = (|A| A-1)T

    (adj AT) = (adj A)T

    Given, A is a square matrix.

    Consider, (adj AT) - (adj A)T

    = |AT| (AT)-1 - (|A| A-1)T

    = |A|T (AT)-1 - (|A|T(A-1)T

    = |A|T (A-1)T - (|A| T(A-1)T

    = 0

    = Null Matrix

    Thus, If A is a square matrix, then what is adj AT - (adj A)T equal to null matrix.

    Hence, the correct option is (C).

  • Question 22
    1 / -0

    \(2 x-3 y=0\) and \(2 x+\alpha y=0\)

    For what value of \(\alpha\) the system has infinitely many solution.

    Solution

    The system of equations \(A X=0\) is said to be homogenous system of equations, then If \(|A| \neq 0\), then its solution \(X=0\), is called trivial solution.

    If \(|A|=0\). Then \(A X=0\) has a non-trivial solution which means the system will have infinitely many solutions.

    Given: \(2 x-3 y=0\) and \(2 x+a y=0\)

    These equations can be written as: \(A X=B\) where,

    \(A=\left[\begin{array}{cc}2 & -3 \\ 2 & \alpha\end{array}\right], X=\left[\begin{array}{l}x \\ y\end{array}\right]\) and \(B=\left[\begin{array}{l}0 \\ 0\end{array}\right]\)

    As we know that, the given system is a homogenous system of equation. So, in order to say that the system has infinitely many solutions: \(|A|=0\).

    \(| A |=2 \alpha+6=0\)

    \(\Rightarrow \alpha=-3\)

    Hence, the correct option is (B).

  • Question 23
    1 / -0

    If \(\omega\) is the cube root of unity, then what is the value of:

    \(\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    Solution

    If the \(1, \omega\) and \(\omega^{2}\) are the cube roots of unity, then \(1+\omega+\omega^{2}=0\)

    If any row and column have all the elements as zero in the square matrix, then the determinant is zero.

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & \omega^{2} \\ \omega & \omega^{2} & 1 \\ \omega^{2} & 1 & \omega\end{array}\right|\)

    \(\mathrm{R}_{3}=\mathrm{R}_{3}+\mathrm{R}_{1}+\mathrm{R}_{2}\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 1+\omega+\omega^{2} \\ \omega & \omega^{2} & 1+\omega+\omega^{2} \\ \omega^{2} & 1 & 1+\omega+\omega^{2}\end{array}\right|\)

    \(\mathrm{D}=\left|\begin{array}{ccc}1 & \omega & 0 \\ \omega & \omega^{2} & 0 \\ \omega^{2} & 1 & 0\end{array}\right|=0\)

    Hence, the correct option is (C).

  • Question 24
    1 / -0

    Find the \((\operatorname{adj} A)\), if:

    \(A=\left[\begin{array}{lll}3 & 7 & 1 \\ 2 & 1 & 8 \\ 4 & 5 & 0\end{array}\right]\)

    Solution

    \(A=\left[\begin{array}{lll}3 & 7 & 1 \\ 2 & 1 & 8 \\ 4 & 5 & 0\end{array}\right]\)

    \(\operatorname{Cof}\left(a_{11}\right)=0-40=-40\)

    \(\operatorname{Cof}\left(a_{12}\right)=-(0-32)=32\)

    \(\operatorname{Cof}\left(a_{13}\right)=10-4=6\)

    \(\operatorname{Cof}\left(a_{21}\right)=-(0-5)=5\)

    \(\operatorname{Cof}\left(a_{22}\right)=0-4=-4\)

    \(\operatorname{Cof}\left(a_{23}\right)=-(15-28)=13\)

    \(\operatorname{Cof}\left(a_{31}\right)=56-1=55\)

    \(\operatorname{Cof}\left(a_{32}\right)=-(24-2)=-22\)

    \(\operatorname{Cof}\left(a_{33}\right)=3-14=-11\)

    \(\operatorname{cof} A=\left[\begin{array}{ccc}-40 & 32 & 6 \\ 5 & -4 & 13 \\ 55 & -22 & -11\end{array}\right]\)

    \(\operatorname{Adj} A=(\operatorname{cof} A)^{\top}=\left[\begin{array}{ccc}-40 & 32 & 6 \\ 5 & -4 & 13 \\ 55 & -22 & -11\end{array}\right]^{T}\)

    \(\Rightarrow \operatorname{Adj} A=\left[\begin{array}{ccc}-40 & 5 & 55 \\ 32 & -4 & -22 \\ 6 & 13 & -11\end{array}\right]\)

    Hence, the correct option is (D).

  • Question 25
    1 / -0

    If \(A=\left[\begin{array}{lll}8 & 7 & 0 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]\), then find the value of \(\left|A^{-1}\right|\).

    Solution

    \(A=\left[\begin{array}{ccc}8 & 7 & 0 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right]\)

    \(\Rightarrow|A|=\left|\begin{array}{lll}8 & 7 & 0 \\ 6 & 5 & 4 \\ 3 & 2 & 1\end{array}\right|\)

    \(\Rightarrow|\mathrm{A}|=8(5-8)-7(6-12)+0(12-15)\)

    \(\Rightarrow|\mathrm{A}|=-24+42+0=18\)

    Therefore, from the properties of determinants \(\left|A^{-1}\right|=\frac{1}{|A|}=\frac{1}{18}\)

    Hence, the correct option is (B).

  • Question 26
    1 / -0
    A and B are determinants of order of 2, such that A = 3B. If |B| = 1. Find |A|
    Solution

    Given: A = 3B and |B| = 1

    To find: |A|

    We know that for n order matrix, |A| = kn|B|. If A = kB

    A = 3B

    Taking determinants both sides, we get:

    |A| = |3B|

    So, |A| = 32|B|

    ⇒ |A| = 9

    Hence, the correct option is (B).

  • Question 27
    1 / -0

    Consider the following in respect of a non-singular matrix of order 3:

    1. A (adj A) = (adj A) A

    2. |adj A| = |A|

    Which of the above statements is / are correct?

    Solution

    Given: the matrix \(A\) is a non singular matrix of order 3.

    Since, \(A\) is non-singular \(A^{-1}\) exist.

    \(A ^{-1}=\frac{1}{| A |} \cdot \operatorname{adj} \cdot A \quad \quad \ldots \)(1)

    Pre-multiply equation (1) by A,

    \(AA ^{-1}=\frac{ A }{| A |} \cdot adj \cdot A\)

    \(\Rightarrow| A \mid= A \cdot( adj \cdot A)\)

    \(\Rightarrow A \cdot( adj \cdot A )=| A | I\quad \quad \ldots \)(2)

    Now, post multiply equation (1) by A,

    \(A^{-1} A=\frac{1}{|A|}(a d j \cdot A) A\)

    \(\Rightarrow \| A \mid=(\operatorname{adj} \cdot A) A\)

    \(\Rightarrow(\operatorname{adj} \cdot A) A=|A| I\quad \quad \ldots \)(3)

    From (2) and (3), we have:

    The statement \(A (\operatorname{adj} A )=(\operatorname{adj} A)A\) is correct.

    Also, A is a non-singular matrix.

    Thus, \(A ^{-1}\) exist.

    \(AA ^{-1}= I\)

    \(A \left(\frac{1}{| A |} \cdot adj \cdot A \right)= I\)

    \(A (\operatorname{adj} A )=| A | I\)

    Take determinants Both side:

    \(| A (\operatorname{adj} A )|=| A\mid I\)

    We know that if \(A\) be an \(n\)-rowed square matrix and '\(k\)' be any scalar then| \(KA \mid=\) \(K ^{n}| A |\)

    Now,

    \(|A||\operatorname{adj} A|=|A|^{n}\left|I_{n}\right|\)

    \(|A||\operatorname{adj} A|=|A|^{n}\)

    \(|\operatorname{adj} A|=|A|^{n-1}\)

    The statement \(|\operatorname{adj} A |=| A |\) is not correct.

    Hence, the correct option is (A).

  • Question 28
    1 / -0

    If \(x,y,z\) are all different and not equal to zero and \(\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\) then the value of \(x^{-1}+y^{-1}+z^{-1}\) is equal to:

    Solution

    \(\left|\begin{array}{ccc}1+x & 1 & 1 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\)

    \(R_{1}=R_{1}-R_{2}\)

    \(\left|\begin{array}{ccc}x & -y & 0 \\ 1 & 1+y & 1 \\ 1 & 1 & 1+z\end{array}\right|=0\)

    \(R_{2}=R_{2}-R_{3}\)

    \(\left|\begin{array}{ccc}x & -y & 0 \\ 0 & y & -z \\ 1 & 1 & 1+z\end{array}\right|=0\)

    Now, Expanding along \(R_{1}\), we get:

    \(x[y(1+z)-(-z)]-(-y)[0-(-z)]+0=0\)

    \(\Rightarrow x[y+y z+z]+y[z]=0\)

    \(\Rightarrow x y+x y z+x z+y z=0\)

    Dividing by \({xyz}\),

    \(\frac{1}{\mathrm{z}}+1+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{x}}=0\)

    \(\Rightarrow {x}^{-1}+{y}^{-1}+{z}^{-1}=-{1}\)

    Hence, the correct option is (A).

  • Question 29
    1 / -0

    Find the area of the triangle with vertices (1, -2), (3, 1) and (2, 4).

    Solution

    Area of the triangle \(A=\frac{1}{2}\left|\begin{array}{lll} x _{1} & y _{1} & 1 \\ x _{2} & y _{2} & 1 \\ x _{3} & y _{3} & 1\end{array}\right|\)

    \(\Rightarrow A =\frac{1}{2}\left|\begin{array}{ccc}1 & -2 & 1 \\ 3 & 1 & 1 \\ 2 & 4 & 1\end{array}\right|\)

    \(\Rightarrow 2 A =1(1-4)-(-2)(3-2)+1(12-2)\)

    \(\Rightarrow 2 A=-3+2+10\)

    \(\Rightarrow A =\frac{9}{2}=4.5\) sq. unit

    Hence, the correct option is (B).

  • Question 30
    1 / -0

    Find the solution set of p if the given system of linear equations is inconsistent.

    \(3 x+3 y+3 z=3\)

    \(3 x+6 y+12 z=3 p\)

    \(3 x+12 y+30 z=3 p ^2\)

    Solution

    Since, the linear equations are inconsistent:

    \(D =0\)

    \(\left|\begin{array}{ccc}3 & 3 & 3 \\ 3 & 6 & 12 \\ 3 & 12 & 30\end{array}\right|\)

    Applying \(C 1= C 1- C 2\)

    \(\left|\begin{array}{ccc}0 & 3 & 3 \\ -3 & 6 & 12 \\ -9 & 12 & 30\end{array}\right|\)

    Applying C2 \(=C 2-C 3\)

    \(\left|\begin{array}{ccc} 0 & 0 & 3 \\ -3 & -6 & 12 \\ -9 & -18 & 30\end{array}\right|\)

    Expanding along \(a13\)

    \(3\left|\begin{array}{cc}-3 & -6\\-9 & -18\end{array}\right|=54-54=0 \)

    \(D_{1}=2 p_{2}-6 p+4=0 \)

    \(p=1,2 \)

    \(D_{1}=\left|\begin{array}{ccc}3 & 3 & 3 \\3 p & 6 & 12 \\3 p^{2} & 12 & 30\end{array}\right| \)

    \(p=1,2 \)

    \(D_{2}=\left|\begin{array}{ccc}3 & 3 & 3 \\3 & 3 p & 12 \\3 & 3 p^{2} & 30\end{array}\right|\)

    \(p=1,2\)

    \(D_{3}=\left|\begin{array}{ccc}3 & 3 & 3 \\3 & 6 & 3 p \\3 & 12 & 3 p^{2} \end{array}\right|\)

    \(p=1,2\)

    So,

    The solution set of \(p\) is:

    \(R -\{1,2\}\)

    Hence, the correct option is (B).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now