Given: the matrix \(A\) is a non singular matrix of order 3.
Since, \(A\) is non-singular \(A^{-1}\) exist.
\(A ^{-1}=\frac{1}{| A |} \cdot \operatorname{adj} \cdot A \quad \quad \ldots \)(1)
Pre-multiply equation (1) by A,
\(AA ^{-1}=\frac{ A }{| A |} \cdot adj \cdot A\)
\(\Rightarrow| A \mid= A \cdot( adj \cdot A)\)
\(\Rightarrow A \cdot( adj \cdot A )=| A | I\quad \quad \ldots \)(2)
Now, post multiply equation (1) by A,
\(A^{-1} A=\frac{1}{|A|}(a d j \cdot A) A\)
\(\Rightarrow \| A \mid=(\operatorname{adj} \cdot A) A\)
\(\Rightarrow(\operatorname{adj} \cdot A) A=|A| I\quad \quad \ldots \)(3)
From (2) and (3), we have:
The statement \(A (\operatorname{adj} A )=(\operatorname{adj} A)A\) is correct.
Also, A is a non-singular matrix.
Thus, \(A ^{-1}\) exist.
\(AA ^{-1}= I\)
\(A \left(\frac{1}{| A |} \cdot adj \cdot A \right)= I\)
\(A (\operatorname{adj} A )=| A | I\)
Take determinants Both side:
\(| A (\operatorname{adj} A )|=| A\mid I\)
We know that if \(A\) be an \(n\)-rowed square matrix and '\(k\)' be any scalar then| \(KA \mid=\) \(K ^{n}| A |\)
Now,
\(|A||\operatorname{adj} A|=|A|^{n}\left|I_{n}\right|\)
\(|A||\operatorname{adj} A|=|A|^{n}\)
\(|\operatorname{adj} A|=|A|^{n-1}\)
The statement \(|\operatorname{adj} A |=| A |\) is not correct.
Hence, the correct option is (A).