Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    If A and B are invertible matrices, then which of the following is not correct?

  • Question 2
    1 / -0

    If x, y, z are all different from zero and \(\begin{vmatrix} 1 + x&1 & 1 \\[0.3em] 1& 1+y &1 \\[0.3em] 1 & 1& 1+z \end{vmatrix}\) = 0, then value of \(x ^{–1} + y ^{–1} + z ^{–1}\) is

  • Question 3
    1 / -0

    The value of the determinant \(\begin{vmatrix} x& x+y& x + 2y \\[0.3em] x + 2y& x & x+y \\[0.3em] x+y & x+2y &x \end{vmatrix}\) is

  • Question 4
    1 / -0

    There are two values of a which makes determinant, \(\Delta = \) \(\begin{vmatrix} 1 & -2& 5 \\[0.3em] 2 & a &-1 \\[0.3em] 0 &4&2a \end{vmatrix}\) = 86, then sum of these number is

  • Question 5
    1 / -0

    If A = \(\begin{bmatrix} -1& \frac{3}{2} \\[0.3em] \frac{-1}{2} & \frac{1}{2} \\[0.3em] \end{bmatrix}\), then \(A^3\)

  • Question 6
    1 / -0

    If A = \(\begin{bmatrix} 2& 1 \\[0.3em] -4 & -2\\[0.3em] \end{bmatrix}\), then the value of I + 2A + 3\(A^2\) + .......... \(\infty\) is

  • Question 7
    1 / -0

    If A = \(\begin{bmatrix} -2& 3 \\[0.3em] -1& 1 \\[0.3em] \end{bmatrix}\), then I + A + \(A^2\) + ..... \(\infty\) = ......

  • Question 8
    1 / -0

    If A = \(\begin{bmatrix} 3& 1 \\[0.3em] -9 & -3 \\[0.3em] \end{bmatrix}\), then I + 2A + 3\(A^2\) + .....\(\infty\) = ....

  • Question 9
    1 / -0

    If the value of determinant \(\begin{vmatrix} a &1 & 1 \\[0.3em] 1 & b & 1\\[0.3em] 1 & 1 & c \end{vmatrix}\) is positive, then

  • Question 10
    1 / -0

    If a, b, c are positive and not all equal, then the value of determinant \(\begin{vmatrix} a& b & c \\[0.3em] b& c & a \\[0.3em] c & a& b \end{vmatrix}\)

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now