Self Studies

Determinants Test - 16

Result Self Studies

Determinants Test - 16
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If A and B are invertible matrices, then which of the following is not correct?

    Solution

    Since, A and B are invertible matrices, So, we can say that

    \((AB)^{-1} = B^{-1}A^{-1} \dots(i)\)

    Also, \(A^{-1} = \frac{1}{|A|} \)(adj A)

    ⇒ adj A = |A|.\(A^{-1} \)  ....(ii)

    Also, det\((A)^{-1} = [det(A)]^{-1}\)

    ⇒ det\((A)^{-1}\) = \(\frac{1}{[det(A)]}\)

    ⇒ det(A). det\((A)^{-1}\) = 1  ....(iii)

    Which is true.

    Again, \((A + B)^{-1} = \frac{1}{|(A + B)|} adj(A + B)\)

    ⇒ \((A + B)^{-1} \neq B^{-1} + A^{-1}\)  ....(iv)

  • Question 2
    1 / -0

    If x, y, z are all different from zero and \(\begin{vmatrix} 1 + x&1 & 1 \\[0.3em] 1& 1+y &1 \\[0.3em] 1 & 1& 1+z \end{vmatrix}\) = 0, then value of \(x ^{–1} + y ^{–1} + z ^{–1}\) is

    Solution

    We have, \(\begin{vmatrix} 1 + x&1 & 1 \\[0.3em] 1& 1+y &1 \\[0.3em] 1 & 1& 1+z \end{vmatrix}\) = 0

    Applying \(C_1 \rightarrow C_1 - C_3\) and \(C_2 \rightarrow C_2 - C_3\),

    ⇒ \(\begin{vmatrix} x& 0& 1 \\[0.3em] 0& y &1 \\[0.3em] -z & -z &1+z \end{vmatrix} = 0\)

    Expanding along \(R_1\)

    x[y(1 + z) + z] - 0 + 1(yz) = 0

    ⇒ x(y + yz + z) + yz = 0

    ⇒ xy + xyz + xz + yz = 0

    ⇒ \(\frac{xy}{xyz} + \frac{xyz}{xyz} + \frac{xz}{xyz} + \frac{yz}{xyz}\) = 0 [on dividing (xyz) from both sides]

    ⇒ \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} + 1 = 0\)

    ⇒ \(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = -1\)

    \(\therefore x^{-1} + y^{-1} + z^{-1} = -1\)

  • Question 3
    1 / -0

    The value of the determinant \(\begin{vmatrix} x& x+y& x + 2y \\[0.3em] x + 2y& x & x+y \\[0.3em] x+y & x+2y &x \end{vmatrix}\) is

    Solution

    We have,

    \(\begin{vmatrix} x& x+y& x + 2y \\[0.3em] x + 2y& x & x+y \\[0.3em] x+y & x+2y &x \end{vmatrix}\)

    \(\begin{vmatrix} 3(x+y)& x+y& y \\[0.3em] 3(x + y)& x &y \\[0.3em] 3( x+y) & x+2y &-2y \end{vmatrix}\) \([\because C_1\) → \(C_1 + C_2 + C_3\) and \(C_3\) → \(C_3 - C_2\)]

    = 3(x + y)\(\begin{vmatrix} 1& (x+y)& y \\[0.3em] 1& x &y \\[0.3em] 1 & (x+2y) &-2y \end{vmatrix}\) [taking 3(x+y) common from first column]

    = 3(x + y)\(\begin{vmatrix} 0& y&0 \\[0.3em] 1& x &y \\[0.3em] 1 & (x+2y) &-2y \end{vmatrix}\) \([\because R_1 \rightarrow R_1 - R_2]\)

    Expanding along \(R_1\),

    = 3(x + y)[-y(-2y) - y]

    \(3y^2\).3(x + y) = \(9y^2\)(x + y)

  • Question 4
    1 / -0

    There are two values of a which makes determinant, \(\Delta = \) \(\begin{vmatrix} 1 & -2& 5 \\[0.3em] 2 & a &-1 \\[0.3em] 0 &4&2a \end{vmatrix}\) = 86, then sum of these number is

    Solution

    \(\Delta = \) \(\begin{vmatrix} 1 & -2& 5 \\[0.3em] 2 & a &-1 \\[0.3em] 0 &4&2a \end{vmatrix}\) = 86

    ⇒ 1(2\(a^2\) + 4) - 2(-4a - 20) + 0 = 86 [expanding along first column]

    ⇒ 2\(a^2\) + 4 + 8a + 40 = 86

    ⇒ 2\(a^2\) + 8a + 44 - 86 = 0

    ⇒ \(a^2\) + 4a - 21 = 0

    ⇒ \(a^2\) + 7a - 3a - 21 = 0

    ⇒ (a + 7)(a - 3) = 0

    a = -7 and 3

    \(\therefore\)Required sum = -7 + 3 = -4

  • Question 5
    1 / -0

    If A = \(\begin{bmatrix} -1& \frac{3}{2} \\[0.3em] \frac{-1}{2} & \frac{1}{2} \\[0.3em] \end{bmatrix}\), then \(A^3\)

    Solution

    The characteristic equation is 

    \(\begin{vmatrix} -1-\lambda& \frac{3}{2} \\[0.3em] \frac{-1}{2} & \frac{1}{2}-\lambda \\[0.3em] \end{vmatrix} = 0\)

    ⇒ \(\lambda^2 + \frac{\lambda}{2} + \frac{1}{4} = 0\)

    ⇒ \(A^2 + \frac{A}{2} + \frac{I}{4} = 0\) gives \(A^2 = \frac{-A}{2} - \frac{I}{4}\)

    \(\therefore A^3 = \frac{-A^2}{2} - \frac{A}{4} \)

    \(\frac{-1}{2}(\frac{-A}{2} - \frac{I}{4}) - \frac{A}{4}\)

    \(\frac{A}{4} + \frac{I}{8} - \frac{A}{4} = \frac{I}{8}\)

  • Question 6
    1 / -0

    If A = \(\begin{bmatrix} 2& 1 \\[0.3em] -4 & -2\\[0.3em] \end{bmatrix}\), then the value of I + 2A + 3\(A^2\) + .......... \(\infty\) is

    Solution

    \(A^2\) = \(\begin{bmatrix} 2& 1 \\[0.3em] -4 & -2\\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 2& 1 \\[0.3em] -4 & -2\\[0.3em] \end{bmatrix}\)

    \(\begin{bmatrix} 0& 0 \\[0.3em] 0 & 0\\[0.3em] \end{bmatrix} = 0\)

    I + 2A + 3\(A^2 + 4A^3\) ......\(\infty\)

    = I + 2A (\(\therefore A^2 = 0, A^3 = A^4 = .... = 0)\)

    \(\begin{bmatrix} 5& 2 \\[0.3em] -8 & -3\\[0.3em] \end{bmatrix}\)

  • Question 7
    1 / -0

    If A = \(\begin{bmatrix} -2& 3 \\[0.3em] -1& 1 \\[0.3em] \end{bmatrix}\), then I + A + \(A^2\) + ..... \(\infty\) = ......

    Solution

    I + A + \(A^2 + \dots \infty = (I - A)^{-1}\)

    \(\begin{bmatrix} 3& -3 \\[0.3em] 1& 0 \\[0.3em] \end{bmatrix}^{-1}\)

    \(\frac{1}{3}\begin{bmatrix} 0& 3 \\[0.3em] - 1& 3 \\[0.3em] \end{bmatrix}\)

  • Question 8
    1 / -0

    If A = \(\begin{bmatrix} 3& 1 \\[0.3em] -9 & -3 \\[0.3em] \end{bmatrix}\), then I + 2A + 3\(A^2\) + .....\(\infty\) = ....

    Solution

    \(A^2\) = \(\begin{bmatrix} 3& 1 \\[0.3em] -9 & -3 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 3& 1 \\[0.3em] -9 & -3 \\[0.3em] \end{bmatrix}\)\(\begin{bmatrix} 0& 0 \\[0.3em] 0 & 0 \\[0.3em] \end{bmatrix} = 0\)

    \(\therefore I + 2A + 3A^2 + \dots \infty\)

    \(I + 2A + 0+ \dots \infty\)

    \(\begin{bmatrix} 1& 0 \\[0.3em] 0 & 1 \\[0.3em] \end{bmatrix} + \begin{bmatrix} 6& 2 \\[0.3em] -18 & -6 \\[0.3em] \end{bmatrix} \)

    \(\begin{bmatrix} 7& 2 \\[0.3em] -18 & -5 \\[0.3em] \end{bmatrix} \)

  • Question 9
    1 / -0

    If the value of determinant \(\begin{vmatrix} a &1 & 1 \\[0.3em] 1 & b & 1\\[0.3em] 1 & 1 & c \end{vmatrix}\) is positive, then

    Solution

    \(\Delta =\)\(\begin{vmatrix} a &1 & 1 \\[0.3em] 1 & b & 1\\[0.3em] 1 & 1 & c \end{vmatrix}\) = abc -(a + b+ c)+ 2 > 0

    ⇒ abc + 2 > a + b + c

    abc + 2 > 3\((abc)^{\frac{1}{3}}\)

    \((\because \frac{a+b+c}{3} > \) \((abc)^{\frac{1}{3}}\))

    \(x^3\) + 2 > 3x where x = \((abc)^{\frac{1}{3}}\)

    \(x^3\) - 3x + 2 > 0 

    ⇒ \((x - 1)^2(x + 2) > 0\) 

    = x > -2

    \((abc)^{\frac{1}{3}}\) > -2 ⇒ abc > - 8

  • Question 10
    1 / -0

    If a, b, c are positive and not all equal, then the value of determinant \(\begin{vmatrix} a& b & c \\[0.3em] b& c & a \\[0.3em] c & a& b \end{vmatrix}\)

    Solution

    \(\begin{vmatrix} a& b & c \\[0.3em] b& c & a \\[0.3em] c & a& b \end{vmatrix}\) = 3abc - \(a^3 - b^3 - c^3\)

    = -(a + b + c)\((a^2 + b^2 + c^2 - ab - bc - ca)\)

    \(-\frac{1}{2}\)(a + b + c)[\((a - b)^2 + (b - c)^2 + (c - a)^2] < 0\)

    \(\therefore\) negative

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now