Self Studies

Determinants Test - 17

Result Self Studies

Determinants Test - 17
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Let $$A=\begin{bmatrix}5 & 5\alpha  &\alpha  \\ 0 & \alpha  &5\alpha  \\ 0 & 0 &5 \end{bmatrix}$$ If $$\left | A^{2} \right |=25$$, then $$\left |\alpha  \right |$$ equals
    Solution
    $$\displaystyle A=\begin{bmatrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{bmatrix}$$

    $$\displaystyle \therefore { A }^{ 2 }=\begin{bmatrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{bmatrix}\begin{bmatrix} 5 & 5\alpha  & \alpha  \\ 0 & \alpha  & 5\alpha  \\ 0 & 0 & 5 \end{bmatrix}=\begin{bmatrix} 25 & 25\alpha +5{ \alpha  }^{ 2 } & 10\alpha +25{ \alpha  }^{ 2 } \\ 0 & { \alpha  }^{ 2 } & 5{ a }^{ 2 }+25 \\ 0 & 0 & 25 \end{bmatrix}$$ 

    $$\left| { A }^{ 2 } \right| =25\begin{vmatrix} 25 & 25\alpha +{ \alpha  }^{ 2 } \\ 0 & { \alpha  }^{ 2 } \end{vmatrix}=625{ \alpha  }^{ 2 }$$

    But $$\left| { A }^{ 2 } \right| =25$$

    $$\displaystyle \therefore 625{ \alpha  }^{ 2 }=25\Rightarrow \left| \alpha  \right| =\frac { 1 }{ 5 } $$
  • Question 2
    1 / -0
    The number of distinct real roots of the equation, $$\begin{vmatrix} \cos x& \sin x & \sin x\\ \sin x & \cos x & \sin x\\ \sin x & \sin x & \cos x\end{vmatrix} = 0$$ 
    in the interval $$\left [-\dfrac {\pi}{4}, \dfrac {\pi}{4}\right ]$$ is/are :
    Solution
    The given determinant is : $$\begin{vmatrix} \cos x& \sin x & \sin x\\ \sin x & \cos x & \sin x\\ \sin x & \sin x & \cos x\end{vmatrix} = 0$$ 

    Taking $$\cos^3 x$$ common in the above determinant, we get,

    $$\cos^3 x\begin{vmatrix} \ 1& tanx & tanx\\ tanx & \ 1 & tanx\\ tanx & tanx & \ 1\end{vmatrix} = 0$$

    $$\cos^3x[1(1-\tan^2 x)-tanx(tanx-tan^2 x) + tanx(tan^2x-tanx)]=0$$

    $$\cos^3x[1-3tan^2 x+ 2tan^3x]=0$$
    We notice that if $$\cos^3x = 0 \rightarrow x=\dfrac{\pi}{2}$$
    This is not satisfied by the given interval
    Thus, $$x=\dfrac{\pi}{2}$$ is not a solution.

    Now, $$1-3tan^2 x+ 2tan^3x=0$$
    It is obvious from the above equation that $$tanx=1$$ is a solution. 
    Thus, $$x=\dfrac{\pi}{4}$$ is a solution.

    We just found out that $$(tanx -1)$$ is a factor of the polynomial $$1-3tan^2 x+ 2tan^3x=0$$
    Thus, dividing the polynomial by $$(tanx-1)$$, we get the quotient as $$2tanx^2 - tanx -1 $$ and remainder $$0$$

    Thus, this can be written as $$(2tanx+1)(tanx-1)=0$$
    Or, $$tanx=\dfrac{-1}{2}$$ or $$tanx=1$$
    We already know that $$tanx=1$$ is a solution to the above equation.
    Thus, $$tanx=\dfrac{-1}{2}$$
    Or, $$x= tan^{-1}\left(\dfrac{-1}{2}\right)$$ 
    This also lies in the interval $$\left[\dfrac{-\pi}{4}, \dfrac{\pi}{4}\right]$$
    Thus there are two distinct real roots to the above equation.
  • Question 3
    1 / -0
    The points $$\displaystyle \left( 0, \frac{8}{3} \right), (1, 3)$$ and $$(82, 30)$$ :
    Solution
    Given $$\displaystyle \left( 0, \frac{8}{3} \right), (1, 3)$$ and $$(82, 30)$$

    $$\begin{vmatrix} 0 & \dfrac { 8 }{ 3 }  & 1 \\ 1 & 3 & 1 \\ 82 & 30 & 1 \end{vmatrix}$$

    $$=216-216=0$$

    Hence, the given points are collinear.
  • Question 4
    1 / -0
    If $$A=\begin {bmatrix} 2 & -3\\ -4 & 1\end{bmatrix}$$, then adj $$(3A^2+12A)$$ is  equal to.
    Solution
    It is given that  $$A =\begin{bmatrix} 2 & -3\\  -4 & 1 \end{bmatrix}$$

    Hence, $$ A^2 = \begin {bmatrix} 2 & -3 \\ -4 &1 \end{bmatrix} \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix} =$$$$\begin{bmatrix} 16 &  -9 \\ -12  & 13 \end{bmatrix}$$

    Now, $$ 3A^2  = \begin{bmatrix} 48 & -27 \\ -36 & 29\end{bmatrix}$$

    $$12A=\begin{bmatrix}24 & -36 \\ -48 & 12\end{bmatrix}$$

    Consider, $$3A^2+12A$$

                     $$=\begin{bmatrix}48 & -27 \\ -36 & 29\end{bmatrix}+\begin{bmatrix}24 & -36 \\ -48 & 12\end{bmatrix}$$

                     $$=\begin{bmatrix}72 & -63 \\ -84 & 51\end{bmatrix}$$

    $$\therefore 3A^2+12A=\begin{bmatrix}72 & -63 \\ -84 & 51\end{bmatrix}$$

    Hence, $$\text{adj}(3A^2+12A)=\begin{bmatrix} 51 & 84 \\ 63 & 72\end{bmatrix}^T=\begin{bmatrix}51&63\\84&72\end{bmatrix}$$
  • Question 5
    1 / -0
    $$\mathrm{If}\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}=-2$$ and $$\mathrm{f}(\mathrm{x})=$$ $$\begin{vmatrix}1+a^{2}x &(1+b^{2})x &(1+c^{2})x \\(1+a^{2})x&1+b^{2}x &(1+c^{2})x\\(1+a^{2})x&(1+b^{2})x & 1+c^2x\end{vmatrix}$$  then $$f(x)$$ is a polynomial of degree 

    Solution
    Applying $$C_{1}\rightarrow C_{1}+ C_{2}+C_{3}$$
    $$\begin{vmatrix}
    1+(a^{2}+b^{2}+c^{2}+2)x&(1+b^{2})x &(1+c^{2})x
    \\ 
    1+(a^{2}+b^{2}+c^{2}+2)x& 1+b^{2}x & (1+c^{2})x\\ 
    1+(a^{2}+b^{2}+c^{2}+2)x& (1+b^{2})x & 1+c^{2}x
    \end{vmatrix}$$ ,
    $$=\begin{vmatrix}
    1&(1+b^{2})x &(1+c^{2})x
    \\ 
    1& 1+b^{2}x & (1+c^{2})x\\ 
    1& (1+b^{2})x & 1+c^{2}x
    \end{vmatrix}$$    $$(\because a^{2}+b^{2}+c^{2}+2=0)$$ 
    Applying $$R_{1}\rightarrow R_{1}-R_{2}$$; $$R_{2}\rightarrow R_{2}-R_{3}$$
    $$F(x) = \begin{vmatrix}
    0 & x-1 &0 \\ 
    0& 1-x & x-1\\ 
    1& (1+B^{2})x & 1+C^{2}x
    \end{vmatrix}$$ ; 
    $$\Rightarrow F(x) = (x-1)^{2}$$
    Hence degree $$= 2.$$
  • Question 6
    1 / -0
    If $$\Delta_1 = \begin{vmatrix}x & \sin \theta & \cos \theta\\-\sin \theta & -x & 1\\\cos \theta & 1 &x\end{vmatrix}$$ and $$\Delta_2 = \begin{vmatrix}x & \sin 2\theta & \cos 2\theta\\-\sin 2\theta & -x & 1\\ \cos 2\theta & 1 & x\end{vmatrix}, x \neq 0$$; then for all $$\theta \in \left(0, \dfrac{\pi}{2}\right):$$
  • Question 7
    1 / -0
    Let $$P = [a_{ij}]$$ be a 3 $$\times$$ 3 matrix and let $$Q = [b_{ij}]$$, where $$b_{ij} = 2^{i + j} a_{ij}$$ for $$1 \leq i, j \leq 3$$. If the determinant of P is 2, then the determinant of the matrix Q is
    Solution
    Given, $$[P]=a_{ij}$$ is a order 3 matrix.

    Let $$Q=\begin{bmatrix} { 2 }^{ 2 }{ a }_{ 11 } & { 2 }^{ 3 }{ a }_{ 12 } & { 2 }^{ 4 }{ a }_{ 13 } \\ { 2 }^{ 3 }{ a }_{ 21 } & { 2 }^{ 4 }{ a }_{ 22 } & { 2 }^{ 5 }{ a }_{ 23 } \\ { 2 }^{ 4 }{ a }_{ 31 } & { 2 }^{ 5 }{ a }_{ 32 } & { 2 }^{ 6 }{ a }_{ 33 } \end{bmatrix}$$

    $$|Q|=\begin{vmatrix} { 2 }^{ 2 }{ a }_{ 11 } & { 2 }^{ 3 }{ a }_{ 12 } & { 2 }^{ 4 }{ a }_{ 13 } \\ { 2 }^{ 3 }{ a }_{ 21 } & { 2 }^{ 4 }{ a }_{ 22 } & { 2 }^{ 5 }{ a }_{ 23 } \\ { 2 }^{ 4 }{ a }_{ 31 } & { 2 }^{ 5 }{ a }_{ 32 } & { 2 }^{ 6 }{ a }_{ 33 } \end{vmatrix}$$

    $$\Rightarrow Q={ 2 }^{ 2 }{ 2 }^{ 3 }{ 2 }^{ 4 }\begin{bmatrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { 2 }{ a }_{ 21 } & { 2 }{ a }_{ 22 } & { 2 }{ a }_{ 23 } \\ { 2 }^{ 2 }{ a }_{ 31 } & { 2 }^{ 2 }{ a }_{ 32 } & { 2 }^{ 2 }{ a }_{ 33 } \end{bmatrix}$$

    $$\Rightarrow |Q|={ 2 }^{ 9 }{ \times 2 }\times { 2 }^{ 2 }\begin{vmatrix} { a }_{ 11 } & { a }_{ 12 } & { a }_{ 13 } \\ { a }_{ 21 } & { a }_{ 22 } & { a }_{ 23 } \\ { a }_{ 31 } & { a }_{ 32 } & { a }_{ 33 } \end{vmatrix}$$

    $$\Rightarrow |Q|=2^{12}|P|$$
    $$\Rightarrow |Q|=2^{13}$$
  • Question 8
    1 / -0
    Consider three points $${P}=(-\sin(\beta-\alpha), -\cos\beta) , {Q}=(\cos(\beta-\alpha), \sin\beta)$$ and $${R}=(\cos(\beta-\alpha +\theta), \sin(\beta-\theta))$$ , where $$0< \alpha,\ \beta,\ \theta <\displaystyle \frac{\pi}{4}$$. Then
    Solution
    $$\mathrm{P}\equiv(-\sin(\beta-\alpha), -\cos\beta)\equiv(\mathrm{x}_{1}, \mathrm{y}_{1})$$
    $$\mathrm{Q}\equiv(\cos(\beta-\alpha), \sin\beta)\equiv(\mathrm{x}_{2}, \mathrm{y}_{2})$$
    and $$\mathrm{R}\equiv(\mathrm{x}_{2}\cos\theta+\mathrm{x}_{1}\sin\theta, \mathrm{y}_{2}\cos\theta+\mathrm{y}_{1}\sin\theta)$$
    We see that $$\displaystyle \mathrm{T}\equiv(\frac{\mathrm{x}_{2}\cos\theta+\mathrm{x}_{1}\sin\theta}{\cos\theta+\sin\theta}, \frac{\mathrm{y}_{2}\cos\theta+\mathrm{y}_{1}\sin\theta}{\cos\theta+\sin\theta})$$ and $$\mathrm{P},\ \mathrm{Q},\ \mathrm{T}$$ are collinear
    $$\Rightarrow \mathrm{P},\ \mathrm{Q},\ \mathrm{R}$$ are non-collinear.
  • Question 9
    1 / -0

    Directions For Questions

    Let $$p$$ be an odd prime number and $$T_p$$ be the following set of $$2 \times\ 2$$ matrices
    $$T_p = \left \{ A = \begin{bmatrix}a & b\\ c & a\end{bmatrix} : a, b, c \in \{ 0, 1, ......, p - 1 \} \right \}$$

    ...view full instructions

    The number of $$A$$ in $$T_p$$ such that $$A$$ is either symmetric or skew-symmetric or both, and det $$(A)$$ divisible by $$p$$, is
    Solution
    Given $$A=\begin{bmatrix} a\quad  & b \\ c & a \end{bmatrix},a,b,c\in \left\{ 0,1,2,...,p-1 \right\} $$
    If A is skew -symmetric matrix, then a =0, b=-c
    $$\therefore \left| A \right| =-{ \left| b \right|  }^{ 2 }$$
    Thus, p divides $$\left| A \right| $$ only when $$b=0$$   ...(1)
    Again, if A is symmetric matrix, then $$v=c$$ and $$\left| A \right| ={ a }^{ 2 }-{ b }^{ 2 }$$
    Thus p divides $$\left| A \right| $$ is either p divides $$(a-b)$$ or o divides $$(a+b)$$
    p divides $$(a-b)$$ only when $$a=b$$
    i.e $$a=b\in \left\{ 0,1,2,...,\left( p-1 \right)  \right\} $$
    i.e p choice
    p divides $$(a+b)$$ $$\Rightarrow $$ p choice including $$a=b=0$$ in (1)
    Therefore total number of choices are $$\left( p+p+1 \right) =2p-1$$
  • Question 10
    1 / -0

    Directions For Questions

    $$\mathrm{A}={\begin{bmatrix}
    1 & 0 & 0\\
    2 & 1 & 0\\
    3 & 2 & 1
    \end{bmatrix}}$$, if $$\mathrm{U}_{1},\ \mathrm{U}_{2}$$ and $$\mathrm{U}_{3}$$ are columns matrices satisfying.
    $$\mathrm{A}\mathrm{U}_{1}={\begin{bmatrix}
    1\\
    0\\
    0
    \end{bmatrix}},\ \mathrm{A}\mathrm{U}_{2}={\begin{bmatrix}
    2\\
    3\\
    0
    \end{bmatrix}},\ \mathrm{A}\mathrm{U}_{3}={\begin{bmatrix}
    2\\
    3\\
    1
    \end{bmatrix}}$$ and $$\mathrm{U}$$ is $$3\times 3$$ matrix whose columns are $$\mathrm{U}_{1},\ \mathrm{U}_{2},\ \mathrm{U}_{3}$$ then answer the following questions

    ...view full instructions

    The value of $$|\mathrm{U}|$$ is
    Solution
    $$A=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix}$$
    $$|A|=1$$
    $$Adj\: A=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
    $$\Rightarrow A^{-1}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}$$
    $$AU_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$
    $$\Rightarrow U_1=A^{-1}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}=\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
    $$AU_2=\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}$$
    $$\Rightarrow U_2=A^{-1}\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}\begin{bmatrix} 2 \\ 3 \\ 0 \end{bmatrix}=\begin{bmatrix} 2 \\ -1 \\ -4 \end{bmatrix}$$
    $$AU_3=\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}$$
    $$\Rightarrow U_3=A^{-1}\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & -2 & 1 \end{bmatrix}\begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix}=\begin{bmatrix} 2 \\ -1 \\ -3 \end{bmatrix}$$
    $$\therefore U=\begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix}$$
    $$U^{-1}=\displaystyle\frac{1}{3}\begin{bmatrix} -1 & -2 & 0 \\ -7 & -5 & -3 \\ 9 & 6 & 3 \end{bmatrix}$$
    $$\therefore$$ Sum of elements of $$U^{-1}$$ is $$0$$.
    Hence, option B.

    Hence $$U=\begin{bmatrix} 1 & 2 & 2 \\ -2 & -1 & -1 \\ 1 & -4 & -3 \end{bmatrix}\Rightarrow \left| U \right| =3$$ 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now