Self Studies

Determinants Te...

TIME LEFT -
  • Question 1
    1 / -0

    $$A = \begin{bmatrix}1&2\\3&4\end{bmatrix}, B = \begin{bmatrix}2&1\\3&4\end{bmatrix}$$ then $$\left|(B^TA^T)^{-1}\right|$$ is equal to

  • Question 2
    1 / -0

    If $$\begin{vmatrix}a&a^3 &a^4-1\\b&b^3&b^4-1\\c&c^3&c^4-1\end{vmatrix}=0$$ and $$a,b,c$$ are all distinct then $$abc (ab+bc+ca)$$ is equal to

  • Question 3
    1 / -0

    If three points $$(k, 2k), (2k, 3k), (3, 1)$$ are collinear, then $$k$$ is equal to:

  • Question 4
    1 / -0

    $$\left|\begin{array}{lllll}
    0 & & \mathrm{c}\mathrm{o}\mathrm{s}\alpha & \mathrm{c}\mathrm{o}\mathrm{s} & \beta\\
    \mathrm{c}\mathrm{o}\mathrm{s} & \alpha & 0 & \mathrm{c}\mathrm{o}\mathrm{s} & \gamma\\
    \mathrm{c}\mathrm{o}\mathrm{s} & \beta & \mathrm{c}\mathrm{o}\mathrm{s}\gamma & 0 &
    \end{array}\right|=$$

  • Question 5
    1 / -0

    If A $$ =\begin{bmatrix}
    0 & c &-b \\
    -c& 0& a\\
    b & -a & 0
    \end{bmatrix}$$ then $$\left ( a^{2}+b^{2}-c^{2} \right )\left | A \right |=$$ 

  • Question 6
    1 / -0

    $$\begin{vmatrix}
    x^{2}+3 &x-1 &x+3 \\
    x+3 & -2x &x-4 \\
    x-3& x+4 & 3x
    \end{vmatrix}$$ $$=px^{4}+qx^3+rx^{2}+sx+t,$$  then $$t = $$

  • Question 7
    1 / -0

    Maximum value of a second order determinant whose every element is either 0,1 or 2 only is:

  • Question 8
    1 / -0

    If abc $$\neq $$0 and if $$\begin{vmatrix}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{vmatrix}$$ = 0 then $$\dfrac{a^{3}+b^{3}+c^{3}}{abc}$$ 

  • Question 9
    1 / -0

    If P =$$\begin{bmatrix}
    1 & 4\\
    2 & 6
    \end{bmatrix}$$ ,then adj (P) 

  • Question 10
    1 / -0

    If $$A=\left\{\begin{array}{lll}
    a & b & c\\
    b & c & a\\
    c & a & b
    \end{array}\right\}$$ then cofactor of $$\mathrm{a}_{21}$$ is:

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now